
1

DATALOG: Hi, I'm Datalog! I like representing things in 
logic.

SAT: Hi, I'm Boolean Satisfiability! I also like 
representing things in logic!

DATALOG: SAT, I bet you can help me with a problem I've been 
having.
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● Each region contains mountains, forest, 
or ocean

● Oceans aren't next to mountains
● Calculate reachability-through-forest 

from home

��
✓ ✓ ✓ ✓

✓ ✓

✓

✓ ✓ ✓ ✓

✓ ✓

✓

DATALOG: I'm making a little adventure game that takes place 
on a tile grid, and I want to use logic to describe, 
and then generate, grids for the game.

Each tile has one of three types, and there's also a 
constraint that I don't want oceans to be right next 
to mountains. Finally, I want to calculate all the 
regions that are reachable from a home region 
through the forest.

SAT: Well, I know how to do two of those things.



∀r∈R. mountain(r) ∨ forest(r) ∨ ocean(r)
∀r∈R.    (¬mountain(r) ∧ ¬forest(r))
          ∨ (¬mountain(r) ∧ ¬ocean(r))
          ∨ (¬forest(r)       ∧ ¬ocean(r))
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SAT: So, for representing the possibility space, I can 
say every region is either a mountain, or a forest, 
or an ocean, and it isn't at least two of those 
things. So that means there's exactly one terrain 
type per region.



∀r∈R. mountain(r) ∨ forest(r) ∨ ocean(r)
∀r∈R.    (¬mountain(r) ∧ ¬forest(r))
          ∨ (¬mountain(r) ∧ ¬ocean(r))
          ∨ (¬forest(r)       ∧ ¬ocean(r))
∀r₁,r₂∈R. (ocean(r₁) ∧ next_to(r₁,r₂))
            ⊃ (forest(r₂) ∨ ocean(r₂))
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SAT: And as for the constraint, I can say that if a 
region is next to an ocean then it's either a forest 
or an ocean, so it can't be mountain.

But I don't know how to calculate reachability.

DATALOG: No problem, I've actually got that part.



��
✓

reach(🏠) 
reach(r₂) :- reach(r₁), next_to(r₁,r₂), forest(r₂)
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DATALOG: I can describe reachability in Datalog with just two 
rules. The first rule forces the home region to be 
marked as reachable...



��
✓ ✓ ✓

✓

reach(🏠) 
reach(r₂) :- reach(r₁), next_to(r₁,r₂), forest(r₂)
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DATALOG: ...and the second rule forces me to mark each 
transitively reachable region.



��
✓ ✓ ✓ ❌ ❌
❌ ❌ ✓ ❌ ❌

reach(🏠) 
reach(r₂) :- reach(r₁), next_to(r₁,r₂), forest(r₂)
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DATALOG: Once I can't derive any more facts, I conclude that 
every other region is not reachable.



��
✓ ✓ ✓ ❌ ❌
❌ ❌ ✓ ❌ ❌

reach(🏠) 
∀r₁,r₂. reach(r₁) ∧ next_to(r₁,r₂) ∧ forest(r₂)
          ⊃ reach(r₂)

reach(🏠) 
reach(r₂) :- reach(r₁), next_to(r₁,r₂), forest(r₂)
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DATALOG: I know rules in Datalog correspond to propositions 
in logic, so I should be able to replace comma with 
and, flip the implication around, and send this to a 
SAT solver, right?

SAT: You certainly can send it to a SAT solver, and your 
intended solution does satisfy that proposition. 
Unfortunately, so do many other things.



��
✓ ✓ ✓ ❌ ❌
❌ ❌ ✓ ❌ ❌

��
✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

reach(🏠) 
∀r₁,r₂. reach(r₁) ∧ next_to(r₁,r₂) ∧ forest(r₂)
          ⊃ reach(r₂)

reach(🏠) 
reach(r₂) :- reach(r₁), next_to(r₁,r₂), forest(r₂)
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SAT: This if-then forces some reachability facts to be 
true, but it doesn't force any of them to be false, 
so as a SAT solver, I can freely choose to make any 
or all of them reachable.



��
✓ ✓ ✓ ❌ ❌
❌ ❌ ✓ ❌ ❌

��
✓ ✓ ✓

✓

∀r₁,r₂. reach(r₂) ↔
          (r₂ = 🏠) ∨
          (reach(r₁) ∧ next_to(r₁,r₂) ∧ forest(r₂))

reach(🏠) 
reach(r₂) :- reach(r₁), next_to(r₁,r₂), forest(r₂)
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SAT: You might think you could fix this by turning the 
if-then into an if-and-only-if: this is called the 
Clark completion of the program. Unfortunately, this 
still doesn't work.

It forces every reachable region to be next to a 
reachable forest, but if you look at this example on 
the right, you'll see there's two forests — which we 
don't want to be reachable — which are next to one 
another. Now if one of them is reachable, all of our 
if-and-only-if conditions for the other one are 
satisfied...



��
✓ ✓ ✓ ❌ ❌
❌ ❌ ✓ ❌ ❌

��
✓ ✓ ✓

✓

❌ ✓

❌ ❌ ✓ ❌ ✓

∀r₁,r₂. reach(r₂) ↔
          (r₂ = 🏠) ∨
          (reach(r₁) ∧ next_to(r₁,r₂) ∧ forest(r₂))

reach(🏠) 
reach(r₂) :- reach(r₁), next_to(r₁,r₂), forest(r₂)
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SAT: ...so we can assign both of them to be reachable and 
this still satisfies our proposition.

This is a kind of general problem with SAT. It's not 
really equipped to define inductive properties like 
reachability or transitive closure.



∀r∈R. mountain(r) ∨ forest(r) ∨ ocean(r)
∀r∈R.    (¬mountain(r) ∧ ¬forest(r))
          ∨ (¬mountain(r) ∧ ¬ocean(r))
          ∨ (¬forest(r)       ∧ ¬ocean(r))
∀r₁,r₂∈R. (ocean(r₁) ∧ next_to(r₁,r₂))
            ⊃ (forest(r₂) ∨ ocean(r₂))

reach(🏠) 
reach(r₂) :- reach(r₁), next_to(r₁,r₂), forest(r₂)
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DATALOG: So, this is a bummer. Like, I can represent half my 
problem in logic according to a SAT solver, and 
represent half of the problem in logic according to 
datalog, but I can't represent the whole problem 
with logic all at once.

[DATALOG shakes fists at the sky!!!1!!1one!!]

DATALOG: If only there were some hero who could help us!
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FCLP: Oh, hi! Hi Datalog! Hi Boolean Satisfiability! I'm 
Finite-Choice Logic Programming, and I think I might 
actually be able to resolve your tensions.

Datalog, something I’ve always liked about you is 
that you have a very high standard of evidence: 
you'll only accept that something is true if there's 
some kind of justification for it, right?

On the other hand, something I've always admired 
about you, Boolean Satisfiability, is that you've 
got a very open mind. You'll accept many possible 
explanations for the evidence you see, whereas 
Datalog only accepts one canonical version of the 
events.

So, let's see what we can do about this, right?



terrain(🏠) 🌳 
forest
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mountain(🏠) ❌ false

forest(🏠) ✓ true

ocean(🏠) ❌ false

proposition truth value attribute value

FCLP: I want to start with a fresh slate, and we'll move 
away from this black and white, boolean mindset.

[SAT removes his black-and-white checkered hat as he considers 
this]

FCLP: Instead of having a predicate forest-of-home that 
can have the value true or false, we're going to 
introduce something called an attribute, 
terrain-of-home, which can have the value mountain, 
forest, or ocean.



mountain(🏠) ❌ false

forest(🏠) ✓ true

ocean(🏠) ❌ false

proposition truth value

terrain(r) ɪs 🌳
“attribute” “value”
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terrain(🏠) 🌳 
forest

attribute value

FCLP: We'll write this as "the terrain of region is 
forest", where the "is" here is just syntax. 
Critically, what we want is that each attribute — 
so, in this example, the terrain of each region — 
can only ever have one value at a time. 



mountain(🏠) ❌ false

forest(🏠) ✓ true

ocean(🏠) ❌ false

proposition truth value

terrain(r) ɪs 🌳
 functional dependency
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terrain(🏠) 🌳 
forest

attribute value

“attribute” “value”

DATALOG: That's actually totally reasonable from a Datalog 
perspective. What you're saying that terrain is a 
two-place relation, with a functional dependency 
from the first argument, the region, to the second 
argument, the terrain type. It's actually pretty 
common in Datalogs to have functional dependencies.



● Calculate reachability-through-forest from home 
● Each region contains mountains, forest, or ocean
● Oceans aren't next to mountains
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FCLP: Cool. So, if we make this change we can return to 
our original spec and start writing this program.



● Calculate reachability-through-forest from home ✅
● Each region contains mountains, forest, or ocean
● Oceans aren't next to mountains
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reach(🏠) 
reach(r₂) :- reach(r₁), next_to(r₁,r₂), terrain(r₂) ɪs 🌳

FCLP: So, for the reachability constraint, we can 
basically use the old datalog program, we just need 
to the tweak the syntax as we described before. But 
for the next step, prepare yourself to enter the 
unknown.

[SAT and DATALOG steel themselves]



● Calculate reachability-through-forest from home ✅
● Each region contains mountains, forest, or ocean ✅
● Oceans aren't next to mountains
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reach(🏠) 
reach(r₂) :- reach(r₁), next_to(r₁,r₂), terrain(r₂) ɪs 🌳
terrain(r) ɪs { ⛰ , 🌳 , 🌊 } :- region(r)

FCLP: In finite-choice logic programming we can represent 
the second constraint with a rule that looks like 
this third line of code here. So, for any region R, 
there's a free choice between the region having 
mountains, forests, or oceans as their terrain. This 
rule forces each region to have some terrain type, 
and requires that it's one of the three we expect.



● Calculate reachability-through-forest from home ✅
● Each region contains mountains, forest, or ocean ✅
● Oceans aren't next to mountains ✅

reach(🏠) 
reach(r₂) :- reach(r₁), next_to(r₁,r₂), terrain(r₂) ɪs 🌳
terrain(r) ɪs { ⛰ , 🌳 , 🌊 } :- region(r)
terrain(r₂) ɪs { 🌳 , 🌊 } :- terrain(r₁) ɪs 🌊 , next_to(r₁,r₂)

∀r₁,r₂∈R. (ocean(r₁) ∧ next_to(r₁,r₂))
            ⊃ (forest(r₂) ∨ ocean(r₂))
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FCLP: Finally, for the constraint that oceans aren't next 
to mountains, let’s think about how we did it in 
SAT. We said that a region next to the ocean must be 
either forest or ocean, and we'll do something 
similar in our finite-choice logic program, where we 
can say, well, like every rule in a Datalog-like 
language, it forces the conclusion to apply if the 
premises apply. This will make it the case that 
ocean-adjacent regions can't have mountains.

DATALOG: Okay, I haven't seen functional dependencies used 
that way before.

FCLP: Right.



��
✓ ✓ ✓ ✓

✓ ✓

✓

✓ ✓ ✓ ✓

✓ ✓

✓

��
✓

✓

✓ ✓

✓ ✓

✓

✓ ✓

✓ ✓

✓

��

✓

✓

✓

✓✓ ✓

✓ ✓

✓

✓

✓

✓

✓ ✓

✓ ✓
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reach(🏠) 
reach(r₂) :- reach(r₁), next_to(r₁,r₂), terrain(r₂) ɪs 🌳
terrain(r) ɪs { ⛰ , 🌳 , 🌊 } :- region(r)
terrain(r₂) ɪs { 🌳 , 🌊 } :- terrain(r₁) ɪs 🌊 , next_to(r₁,r₂)

FCLP: Nonetheless, these four rules represent this 
possibility space we wanted of tile grids where 
oceans aren't next to mountains, and it correctly 
represents reachability from a starting location 
without the unjustified inferences.

SAT: That's pretty cool, but how do you precisely define 
the meaning of one of these finite-choice logic 
programs? I mean in SAT it's pretty simple: any 
assignment of "true" or "false" to propositions that 
makes the formula true is a valid meaning.

[SAT Turns to DATALOG]

SAT: For that matter, how does Datalog define the meaning 
of a program?

DATALOG: It's not that simple, but I'd still say it's pretty 
straightforward.



reach(a)
next_to(a,b)
terrain(b) ɪs 🌳

reach(r₂) :- reach(r₁), next_to(r₁,r₂), terrain(r₂) ɪs 🌳 reach(a)
next_to(a,b)
terrain(b) ɪs 🌳
reach(b)

ruleD₁ D₂
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DATALOG: In Datalog, everything that we're doing is in terms 
of monotonic functions that grow our database, the 
set of facts that we're gathering.

Every rule is a function that can grow the database: 
if the premises are satisfied, then we can add the 
conclusion. For example, the transitive reachability 
rule is a function taking a database with a couple 
of facts — two regions are next to each other, one's 
reachable, the other's forest — and outputting a 
database that also contains the fact that the other 
one is reachable.

Informally, the meaning of a Datalog program is "run 
the rules until you can't run the rules anymore," 
but formally, there's a pretty well-understood 
recipe.



ruleD₁ D₂

D₁ D₂imm. cons.

1. Interpret each rule as a
function

2. Join the output of ALL rules

3. Show imm. cons. is monotonic

4. Observe we have a complete lattice

∴ The least fixed point of imm. cons. is uniquely defined 
(Knaster-Tarski) 23

DATALOG: Once you explain what one rule does, you join the 
result of all of the rules together: this is a 
function from databases to databases called 
immediate consequence.

Then, you need to show that the immediate 
consequence function is monotonic under set 
inclusion. Because sets ordered in this way are a 
complete lattice, the Knaster-Tarski theorem gives 
us a least fixed point, and that least fixed point 
is the meaning of the Datalog program.



region(🏠)  

terrain(r) ɪs { ⛰ , 🌳 , 🌊 } :- region(r)

region(🏠)  
terrain(🏠) ɪs ⛰

region(🏠)  
terrain(🏠) ɪs 🌳 region(🏠)  

terrain(🏠) ɪs 🌊
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DATALOG: But in this case a rule with choices seems like it 
creates a whole set of possible successor databases, 
so I don't know what it means to iterate this a 
fixed point. The domain and codomain aren't even the 
same thing!

FCLP: Right. Yeah, so this is where things get fun. 



rule
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“choice set”
“database”

FCLP: You’re on the right track with observing that 
applying a rule can be thought of as function from 
one database to a set of databases. And in fact,  
they're actually sets of mutually incompatible 
databases, which means that any two databases will 
always disagree on at least one of their attributes.

This structure is something important for our 
definition and our semantics: we call it a choice 
set. And, equipped with this mathematical 
definition, we can actually follow more or less the 
same recipe Datalog uses. We'll just need one extra 
step.



1. Interpret each rule as a
function

2a. Join the output of ALL rules

2b. Lift imm. cons. to a
function on choice 
sets 

3. Show IMM. CONS. is monotonic
4. Observe we have a complete lattice
∴ The l.f.p. of IMM. CONS. is uniquely defined

rule

imm. cons.

IMM. CONS.
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FCLP: Okay. So, adapting this recipe.

First, we're going to interpret each rule in a 
finite-choice logic program as a function from a 
database to a set of databases: a choice set.

Then, we'll join the output of all rules using an 
appropriate definition of "join," and that will 
produce our immediate consequence operator from a 
database to a choice set.

And then, the one extra step we need is just to lift 
that immediate consequence operator to be a function 
on choice sets so that we have the domain and 
codomain as the same.

And once we do that, we need to show that this 
immediate consequence operator is monotonic, observe 
we have a complete lattice, and the least fixed 
point of this immediate consequence function is the 
meaning of a finite-choice logic program.



1. Interpret each rule as a
function (Def. 4.13)

2a. Join the output of ALL rules
(Def. 4.14)

2b. Lift imm. cons. to a
function on choice 
sets  (Def. 5.3)

3. Show IMM. CONS. is monotonic under         (Lemma 5.6)
4. Observe we have a complete lattice (Def. 4.19, Def. 4.11)
∴ The l.f.p. of IMM. CONS. is uniquely defined (Theorem 5.7)

rule

imm. cons.

IMM. CONS.
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⊑

[DATALOG boggles]

DATALOG: Okay. So. I recognize the pattern here... but... I 
have questions.

FCLP: That's understandable. All the gory details, of 
course, are in the paper.

But maybe just to give you a flavor of it, I'll 
explain a key piece here: the ordering that makes 
choice sets into a complete lattice.

DATALOG: Okay. So in datalog, we gain information and we grow 
our database by adding new facts. How do you going 
to gain information and grow a choice set?



Three ways to grow a choice set
1. Learn more information

⊆reach(a)
next_to(a,b)
terrain(b) ɪs 🌳

reach(a)
next_to(a,b)
terrain(b) ɪs 🌳
reach(b)
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FCLP: Great question. So there's three ways.

There's the Datalog way in which it's possible for a 
database to have more information than another 
database by virtue of being a superset.



Three ways to grow a choice set
1. Learn more information

⊑reach(a)
next_to(a,b)
terrain(b) ɪs 🌳

reach(a)
next_to(a,b)
terrain(b) ɪs 🌳
reach(b)
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FCLP: If we embed those databases in otherwise-similar 
choice sets, then we can say we're also adding 
information to the choice set.

Another way to think of it is that we replace one 
database in the smaller choice set with a single 
successor database in the larger choice set.



Three ways to grow a choice set
1. Learn more information
2. Split into multiple possibilities

⊑region(🏠)  

region(🏠)  
terrain(🏠) ɪs ⛰

region(🏠)  
terrain(🏠) ɪs 🌊

region(🏠)  
terrain(🏠) ɪs 🌳
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FCLP: The second way we can learn information is by 
splitting into multiple possibilities. When we 
freely choose a terrain type for a region, we are 
adding information by replacing a single database 
with multiple, mutually incompatible, successors.



Three ways to grow a choice set
1. Learn more information
2. Split into multiple possibilities
3. Eliminate possibilities

🛑 ⊑  next_to(a,b)  
  terrain(a) ɪs 🌊
  terrain(b) ɪs ⛰
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FCLP: And then finally, we can actually gain information 
by removing a database.

So if it violates a constraint — say, by putting 
mountains next to oceans — then you can learn more 
information by removing that database. In other 
words, you can replace this database with zero 
successors.



Three ways to grow a choice set
1. Learn more information
2. Split into multiple possibilities
3. Eliminate possibilities

Definition 4.9, part 1:

C₁ ⊑ C₂ 
if and only if

for all D₂ ∈ C₂, there exists a D₁ ∈ C₁ such that D₁ ⊆ D₂
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FCLP: If we put all these together into a formal 
definition, we get something with kind of a 
contravariant flavor to it. So, a choice set C1 is 
less than the choice set C2 if, for every database 
in the greater choice set, there is some smaller 
database in the lesser choice set C1.



Three ways to grow a choice set
1. Learn more information
2. Split into multiple possibilities
3. Eliminate possibilities

Definition 4.9, part 1 (Smyth ordering on choice sets):

C₁ ⊑ C₂ 
if and only if

for all D₂ ∈ C₂, there exists a D₁ ∈ C₁ such that D₁ ⊆ D₂
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FCLP: If any of you are fans and familiars of domain 
theory, this might look familiar to you as the 
“Smyth” ordering on powerdomains, which is a common 
model of nondeterministic programming!



Finite-Choice Logic Programming
● Like SAT, allows mutually-exclusive choices 

● Like Datalog, makes only justified inferences

● Like Datalog, has a least-fixed-point semantics

34

FCLP: So. In summary, the model of finite-choice logic 
programming combines the mutually-exclusive choices 
of SAT with the justified inferences and 
least-fixed-point semantics of datalog.

DATALOG: Great! And so all this, like, exists?!!!



Finite-Choice Logic Programming
● Like SAT, allows mutually-exclusive choices 

● Like Datalog, makes only justified inferences

● Like Datalog, has a least-fixed-point semantics

https://dusa.rocks/
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FCLP: Yeah, actually! We have an implementation called 
Dusa which you can try out at dusa-dot-rocks. It's 
pretty good!

[DATALOG is jubilant!!!1!!1one!!]

DATALOG: This is amazing! Surely nothing will ever go wrong!
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ASP: PARDON ME. I HAVE MORE OF A COMMENT THAN A QUESTION.

You see, Answer Set Programming handles this 
combination of forced deduction and free choice that 
you've been describing. What's the connection?

FCLP: So, this is a great observation. Everyone, I'd like 
to introduce you to Answer Set Programming, an old 
friend of mine who I've actually learned a lot from. 
In fact, one of my original motivations was 
understanding ASP better.



Finite-Choice Logic Programming and ASP

● With open rules for default reasoning, finite-choice logic 
programming can interpret ASP

37

FCLP: Let me give you at least a kind of first answer 
here.

We have another kind of rule in the paper that we 
haven't talked about that permitting a kind of 
“default reasoning." With that addition, we can 
actually translate all answer set programs to 
finite-choice logic programs.

ASP: Okay. No offense, but why not just translate your 
finite-choice logic programs into answer set 
programming? Are you giving us anything new?



Finite-Choice Logic Programming and ASP

● With open rules for default reasoning, finite-choice logic 
programming can interpret ASP

● Finite-choice logic programming can work with infinite possibility 
spaces without a "grounding" step

38

FCLP: Okay, fair question. So, actually, yes!

One of the big limitations of the standard stable 
model semantics for answer set programming is that 
it only gives meaning to "ground" programs — those 
without any logic variables in them.

In practice, this actually means that conventional 
ASP solvers require a separate "grounding phase" 
before they can even start solving, so they'll 
actually only be able represent finite domains, and 
they can't handle possibility spaces with infinitely 
many solutions.



run(0) ɪs { 🛑 , 🏃 }
run(n+1) ɪs { 🛑 , 🏃 } :- run(n) ɪs 🏃
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Finite-Choice Logic Programming and ASP

● With open rules for default reasoning, finite-choice logic 
programming can interpret ASP

● Finite-choice logic programming can work with infinite possibility 
spaces without a "grounding" step

FCLP: To illustrate this, let me give you the simplest 
possible example I can think of.

At index 0 of this program, we will make a free 
choice between "stop" and "continue."

And then, if we've made the choice to continue at 
index n, then at index n-plus-one, we'll make that 
choice again.



run(0) ɪs 🏃
run(1) ɪs 🏃
run(2) ɪs 🏃
run(3) ɪs 🛑

run(0) ɪs 🏃
run(1) ɪs 🏃
run(2) ɪs 🛑

run(0) ɪs 🏃
run(1) ɪs 🛑run(0) ɪs 🛑

run(0) ɪs 🏃
run(1) ɪs 🏃
run(2) ɪs 🏃
run(3) ɪs 🏃
run(4) ɪs 🛑

...and on and on...

run(0) ɪs { 🛑 , 🏃 }
run(n+1) ɪs { 🛑 , 🏃 } :- run(n) ɪs 🏃
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FCLP: The meaning according the semantics that we've 
defined contains infinitely many possibilities, one 
for each (co)natural number, and our Dusa 
implementation will actually enumerate these 
solutions productively.

But, given a similar answer set program, a 
conventional ASP solver would have to count to 
infinity before would return solutions, so of 
course, it won’t. 



run(0) ɪs { 🛑 , 🏃 }
run(n+1) ɪs { 🛑 , 🏃 } :- run(n) ɪs 🏃
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Finite-Choice Logic Programming and ASP

● With open rules for default reasoning, finite-choice logic 
programming can interpret ASP

● Finite-choice logic programming can work with infinite possibility 
spaces without a "grounding" step (like lazy-grounding ASP)

FCLP: There has been work on something called "lazy answer 
set programming" that can handle these situations. 
But, it's, like, treated as an additional 
complication on top of answer set programming; 
whereas, we found — kind of excitingly — when we 
started with this more a direct denotational 
semantics, the meaning of infinite possibility 
spaces emerges naturally.



run(0) ɪs { 🛑 , 🏃 }
run(n+1) ɪs { 🛑 , 🏃 } :- run(n) ɪs 🏃
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Finite-Choice Logic Programming and ASP

● With open rules for default reasoning, finite-choice logic 
programming can interpret ASP

● Finite-choice logic programming can work with infinite possibility 
spaces without a "grounding" step (like lazy-grounding ASP)

○ Spaces of inductively defined datatypes 
are infinite possibility spaces

FCLP: This stop-and-go example is, you know, the simplest 
thing I could think of, but I'm excited about it 
because I think it can actually scale to the task 
of, say, enumerating algebraic datatypes, which is 
something you can't easily do in ASP.

So, I hope that answers some of your concerns, 
perhaps.

[Thumbs up from ASP]



Finite-Choice Logic Programming
● Like SAT, allows mutually-exclusive choices & multiple solutions 
● Like Datalog, makes only justified inferences
● Least-fixed-point semantics in terms of choice sets
● Implementation at https://dusa.rocks

Also in the paper
● Many examples
● Nondeterministic algorithm & correctness proof
● McAllester-style prefix-firing cost semantics
● Performance comparison with multiple ASP implementations (graphs!)
● Open rules and ASP-to-finite-choice-logic-programming translation
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FCLP: Okay. So now, for real, in conclusion: finite-choice 
logic programming unifies the strengths of Datalog 
and Boolean Satisfiability, generalizes answer set 
programming, and enjoys a least-fixed point 
semantics in terms of these "choice set" structures. 
We’re excited about this approach to representing 
and exploring “possibility spaces”, or sets of 
possible worlds defined by a shared set of rules 
that produce them. 

I hope we gave you a few reasons why finite-choice 
logic programming might be worth learning more 
about. And if you like more math, examples, 
experiment data, and so on, you can find it in the 
paper. If you prefer hand-drawn pictures and 
examples and puzzles, ask for a zine.

And that's it! Thanks very much.

[QR code links to dusa.rocks/docs/popl]

https://dusa.rocks
https://dl.acm.org/doi/10.1145/3704849
https://dl.acm.org/doi/10.1145/3704849
https://ko-fi.com/s/3ca6bcf73e
https://ko-fi.com/s/9865ba41a7
https://dusa.rocks/docs/popl

