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Abstract
A logical framework and its implementation should serve as a flexible tool for

specifying, simulating, and reasoning about formal systems. When the formal sys-
tems we are interested in exhibit state and concurrency, however, existing logical
frameworks fall short of this goal. Logical frameworks based on a rewriting inter-
pretation of substructural logics, ordered and linear logic in particular, can help. To
this end, this dissertation introduces and demonstrates four methodologies for devel-
oping and using substructural logical frameworks for specifying and reasoning about
stateful and concurrent systems.

Structural focalization is a synthesis of ideas from Andreoli’s focused sequent
calculi and Watkins’s hereditary substitution. We can use structural focalization to
take a logic and define a restricted form of derivations, the focused derivations, that
form the basis of a logical framework. We apply this methodology to define SLS, a
logical framework for substructural logical specifications, as a fragment of ordered
linear lax logic.

Logical correspondence is a methodology for relating and inter-deriving dif-
ferent styles of programming language specification in SLS. The styles we con-
nect range from very high-level specification styles like natural semantics, which
do not fully specify the control structure of programs, to low-level specification
styles like destination-passing, which provide detailed control over concurrency and
control flow. We apply this methodology to systematically synthesize a low-level
destination-passing semantics for a Mini-ML language extended with stateful and
concurrent primitives. The specification is mostly high-level except for the relatively
few rules that actually deal with concurrency.

Linear logical approximation is a methodology for deriving program analyses
by performing abstract analysis on the SLS encoding of the language’s operational
semantics. We demonstrate this methodology by deriving a control flow analysis and
an alias analysis from suitable programming language specifications.

Generative invariants are a powerful generalization of both context-free gram-
mars and LF’s regular worlds that allow us to express invariants of SLS specifica-
tions in SLS. We show that generative invariants can form the basis of progress-and-
preservation-style reasoning about programming languages encoded in SLS.
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Chapter 1

Introduction

Suppose you find yourself in possession of

∗ a calculator of unfamiliar design, or

∗ a new board game, or

∗ the control system for an army of robots, or

∗ an implementation of a security protocol, or

∗ the interface to a high-frequency trading system.

The fundamental questions are the same: What does it do? What are the rules of the game? The
answer to this question, whether it comes in the form of an instruction manual, a legal document,
or an ISO standard, is a specification.

Specifications must be formal, because any room for misinterpretation could (respectively)
lead to incorrect calculations, accusations of cheating, a robot uprising, a security breach, or
bankruptcy. At the same time, specifications must be clear: while clarity is in the eye of the
beholder, a specification that one finds hopelessly confusing or complex is no more useful than
one that is hopelessly vague. Clarity is what allows us to communicate with each other, to use
specifications to gain a common understanding of what some system does and to think about how
that system might be changed. Formality is what allows specifications to interact with the world
of computers, to say with confidence that the implementation of the calculator or high-frequency
trading system obeys the specification. Formality also allows specifications to interact with the
world of mathematics, and this, in turn, enables us to make precise and accurate statements about
what may or may not happen to a given system.

The specification of many (too many!) critical systems still remains in the realm of English
text, and the inevitable lack of formality can and does make formal reasoning about these spec-
ifications difficult or impossible. Notably, this is true about most of the programming languages
used to implement our calculators, program our robot army control systems, enforce our security
protocols, and interact with our high-frequency trading systems. In recent years, however, we
have finally begun to seen the emergence of operational semantics specifications (the “rules of
the game” for a programming language) that are truly formal. A notable aspect of this recent
work is that the formalization effort is not done simply for formalization’s sake. Ellison and
Roşu’s formal semantics of C can be used to check individual programs for undefined behavior,
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unsafe situations where the rules of the game no longer apply and the compiler is free to do any-
thing, including unleashing the robot army [ER12]. Lee, Crary, and Harper’s formalization of
Standard ML has been used to formally prove – using a computer to check all the proof’s formal
details – a much stronger safety property: that every program accepted by the compiler is free of
undefined behavior [LCH07].

Mathematics, by contrast, has a century-long tradition of insisting on absolute formality (at
least in principle: practice often falls far short). Over time, this tradition has become a col-
laboration between practicing mathematicians and practicing computer scientists, because while
humans are reasonable judges of clarity, computers have an absolutely superhuman patience for
checking all the formal details of an argument. One aspect of this collaboration has been the
development of logical frameworks. In a logical framework, the language of specifications is
derived from the language of logic, which gives specifications in a logical framework an inde-
pendent meaning based on the logic from which the logical framework was derived. To be clear,
the language of logic is not a single, unified entity: logics are formal systems that satisfy certain
internal coherence properties, and we study many of them. For example, the logical framework
Coq is based on the Calculus of Inductive Constructions [Coq10], the logical framework Agda is
based on a variant of Martin-Löf’s type theory called UTTΣ [Nor07], and the logical framework
Twelf is based on the dependent type theory λΠ, also known as LF [PS99b]. Twelf was the basis
of Lee, Crary, and Harper’s formalization of Standard ML.

Why is there not a larger tradition of formally specifying the programming languages that
people actually use? Part of the answer is that most languages that people actually use have lots
of features – like mutable state, or exception handling, or synchronization and communication, or
lazy evaluation – that are not particularly pleasant to specify using existing logical frameworks.
Dealing with a few unpleasant features at a time might not be much trouble, but the combinations
that appear in actual programming languages cause formal programming language specifications
to be both unclear for humans to read and inconvenient for formal tools to manipulate. A more
precise statement is that the addition of the aforementioned features is non-modular, because
handling a new feature requires reconsidering and revising the rest of the specification. Some
headway on this problem has been made by frameworks like the K semantic framework that
are formal but not logically derived; the K semantic framework is based on a formal system
of rewriting rules [RŞ10]. Ellison and Roşu’s formalization of C was done in the K semantic
framework.

This dissertation considers the specification of systems, particularly programming languages,
in logical frameworks. We consider a particular family of logics, called substructural logics,
in which logical propositions can be given an interpretation as rewriting rules as detailed by
Cervesato and Scedrov [CS09]. We seek to support the following:

Thesis Statement: Logical frameworks based on a rewriting interpretation of sub-
structural logics are suitable for modular specification of programming languages
and formal reasoning about their properties.1

Part I of the dissertation covers the design of logical frameworks that support this rewriting
interpretation and the design of the logical framework SLS in particular. Part II considers the

1The original thesis proposal used the phrase “forward reasoning in substructural logics” instead of the phrase
“a rewriting interpretation of substructural logics,” but these are synonymous, as discussed in Section 4.6.
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hd

Figure 1.1: Series of PDA transitions

modular specification of programming language features in SLS and the methodology by which
we organize and relate styles of specification. Part III discusses formal reasoning about properties
of SLS specifications, with an emphasis on establishing invariants.

1.1 Logical frameworks
Many interesting stateful systems have a natural notion of ordering that is fundamental to their
behavior. A very simple example is a push-down automaton (PDA) that reads a string of symbols
left-to-right while maintaining and manipulating a separate stack of symbols. We can represent
a PDA’s internal configuration as a sequence with three regions:

[ the stack ] [ the head ] [ the string being read ]

where the symbols closest to the head are the top of the stack and the symbol waiting to be read
from the string. If we represent the head as a token hd, we can describe the behavior (the rules
of the game) for the PDA that checks a string for correct nesting of angle braces by using two
rewriting rules:

hd <  < hd (push)
< hd >  hd (pop)

The distinguishing feature of these rewriting rules is that they are local – they do not mention
the entire stack or the entire string, just the relevant fragment at the beginning of the string and
the top of the stack. Execution of the PDA on a particular string of tokens then consists of (1)
appending the token hd to the beginning of the string, (2) repeatedly performing rewritings until
no more rewrites are possible, and (3) checking to see if only a single token hd remains. One
possible series of transitions that this rewriting system can take is shown in Figure 1.1

Because our goal is to use a framework that is both simple and logically motivated, we turn
to a substructural logic called ordered logic, a fragment of which was originally proposed by
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Lambek for applications in computational linguistics [Lam58]. In ordered logic, hypotheses are
ordered relative to one another and cannot be rearranged. The rewriting rules we considered
above can be expressed as propositions in ordered logic, where the tokens hd, >, and < are all
treated as atomic propositions:

push : hd •< � {< • hd}
pop : < • hd •> � {hd}

The symbol • (pronounced “fuse”) is the binary connective for ordered conjunction (i.e. con-
catenation); it binds more tightly than�, a binary connective for ordered implication. The curly
braces {. . .} can be ignored for now.

The propositional fragment of ordered logic is Turing complete: it is in fact a simple exercise
to specify a Turing machine! Nevertheless, first-order quantification helps us write specifications
that are short and clear. For example, by using first-order quantification we can describe a a more
general push-down automaton in a generic way. In this generic specification, we use left(X)
and right(X) to describe left and right angle braces (X = an), square braces (X = sq), and
parentheses (X = pa). The string [ < > ( [ ] ) ] is then represented by the following sequence of
ordered atomic propositions:

left(sq) left(an) right(an) left(pa) left(sq) right(sq) right(pa) right(sq)

The following rules describe the more general push-down automaton:

push : ∀x. hd • left(x) � {stack(x) • hd}
pop : ∀x. stack(x) • hd • right(x) � {hd}

(This specification would still be possible in propositional ordered logic; we would just need one
copy of the push rule and one copy of the pop rule for each pair of braces.) Note that while
we use the fuse connective to indicate adjacent tokens in the rules above, no fuses appear in
Figure 1.1. That is because the intermediate states are not propositions in the same way rules are
propositions. Rather, the intermediate states in Figure 1.1 are contexts in ordered logic, which
we will refer to as process states.

The most distinctive characteristic of these transition systems is that the intermediate stages
of computation are encoded in the structure of a substructural context (a process state). This
general idea dates back to Miller [Mil93] and his Ph.D. student Chirimar [Chi95], who encoded
the intermediate states of a π-calculus and of a low-level RISC machine (respectively) as contexts
in focused classical linear logic. Part I of this dissertation is concerned with the design of logical
frameworks for specifying transition systems. In this respect, Part I follows in the footsteps of
Miller’s Forum [Mil96], Cervesato and Scedrov’s multiset rewriting language ω [CS09], and
Watkins et al.’s CLF [WCPW02].

As an extension to CLF, the logical framework we develop is able to specify systems like
the π-calculus, security protocols, and Petri nets that can be encoded in CLF [CPWW02]. The
addition of ordered logic allows us to easily incorporate systems that are naturally understood as
string rewriting systems. An example from the verification domain, taken from Bouajjani and
Esparza [BE06], is shown in Figure 1.2. The left-hand side of the figure is a simple Boolean
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bool function foo(l)
f0: if l then
f1: return ff

else
f2: return tt

fi

procedure main()
global b
m0: while b do
m1: b := foo(b)

od
m2: return

〈b〉 〈tt, f0〉 → 〈b〉 〈tt, f1〉
〈b〉 〈ff, f0〉 → 〈b〉 〈ff, f2〉
〈b〉 〈l, f1〉 → 〈ff〉
〈b〉 〈l, f2〉 → 〈tt〉

〈tt〉 〈m0〉 → 〈tt〉 〈m1〉
〈ff〉 〈m0〉 → 〈ff〉 〈m2〉
〈b〉 〈m1〉 → 〈b〉 〈b, f0〉 〈m0〉
〈b〉 〈m2〉 → ε

∀b. gl(b) • foo(tt, f0)�
{gl(b) • foo(tt, f1)}
∀b. gl(b) • foo(ff, f0)�
{gl(b) • foo(ff, f1)}
∀b. gl(b) • foo(l, f1)� {gl(ff)}
∀b. gl(b) • foo(l, f2)� {gl(tt)}

gl(tt) •main(m0)�
{gl(tt) •main(m1)}

gl(ff) •main(m0)�
{gl(tt) •main(m2)}
∀b. gl(b) •main(m1)�
{gl(b) • foo(b, f0) •main(m0)}
∀b. gl(b) •main(m2)� {1}

Figure 1.2: A Boolean program, encoded as a rewriting system and in SLS

program: the procedure foo has one local variable and the procedure main has no local variables
but mentions a global variable b. Bouajjani and Esparza represented Boolean programs like this
one as canonical systems like the one shown in the middle of Figure 1.2. Canonical systems are
rewriting systems where only the left-most tokens are ever rewritten: the left-most token in this
canonical system always has the form 〈b〉, where b is either true (tt) or false (ff), representing
the valuation of the global variables – there is only one, b. The token to the right of the global
variables contains the current program counter and the value of the current local variables. The
token to the right of that contains the program counter and local variables of the calling proce-
dure, and so on, forming a call stack that grows off to the right (in contrast to the PDA’s stack,
which grew off to the left). Canonical systems can be directly represented in ordered logic, as
shown on the right-hand side of Figure 1.2. The atomic proposition gl(b) contains the global
variables (versus 〈b〉 in the middle column), the atomic proposition foo(l, f) contains the local
variables and program counter within the procedure foo (versus 〈l, f〉 in the middle column), and
the atomic proposition main(m) contains the program counter within the procedure main (versus
〈m〉 in the middle column).

The development of SLS, a CLF-like framework of substructural logical specifications that
includes an intrinsic notion of order, is a significant development of Part I of the dissertation.
However, the principal contribution of these three chapters is the development of structural fo-
calization, which unifies Andreoli’s work on focused logics [And92] with the hereditary substi-
tution technique that Watkins developed in the context of CLF [WCPW02]. Chapter 2 explains
structural focalization in the context of linear logic, Chapter 3 establishes focalization for a richer
substructural logic OL3, and Chapter 4 takes focused OL3 and carves out the SLS framework as
a fragment of the focused logic.
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1.2 Substructural operational semantics

Existing logical frameworks are perfectly capable of representing simple systems like PDAs, and
while applications in the verification domain like the rewriting semantics of Boolean programs
are an interesting application of SLS, they will not be a focus of this dissertation. Instead, in
Part II, we will concentrate on specifying the operational semantics of programming languages
in SLS. We can represent operational semantics in SLS in many ways, but we are particularly
interested in a broad specification style called substructural operational semantics, or SSOS
[Pfe04, PS09].2 SSOS is a synthesis of structural operational semantics, abstract machines, and
logical specifications.

One of our running examples will be a call-by-value operational semantics for the untyped
lambda calculus, defined by the BNF grammar:

e ::= x | λx.e | e1 e2

Taking some liberties with our representation of terms,3 we can describe call-by-value evaluation
for this language with the same rewriting rules we used to describe the PDA and the Boolean
program’s semantics. Our specification uses three atomic propositions: one, eval(e), carries an
unevaluated expression e, and another, retn(v), carries an evaluated value v. The third atomic
proposition, cont(f), contains a continuation frame f that represents some partially evaluated
value: f = 2 e2 contains an expression e1 e2 waiting on the evaluation of e1 to a value, and
f = (λx.e)2 contains an function λx.e waiting on the evaluation of e2 to a value. These frames
are arranged in a stack that grows off to the right (like the Boolean program’s stack).

The evaluation of a function is simple, as a function is already a fully evaluated value, so we
replace eval(λx.e) in-place with retn(λx.e):

ev/lam : eval (λx.e)� {retn (λx.e)}

The evaluation of an application e1 e2, on the other hand, requires us to push a new element onto
the stack. We evaluate e1 e2 by evaluating e1 and leaving behind a frame 2 e2 that suspends the
argument e2 while e1 is being evaluated to a value.

ev/app : eval (e1 e2)� {eval (e1) • cont (2 e2)}

When a function is returned to a waiting 2 e2 frame, we switch to evaluating the function argu-
ment while storing the returned function in a frame (λx.e)2.

ev/app1 : retn (λx.e) • cont (2 e2)� {eval (e2) • cont ((λx.e)2)}

Finally, when an evaluated function argument is returned to the waiting (λx.e)2 frame, we
substitute the value into the body of the function and evaluate the result.

ev/app2 : retn (v2) • cont ((λx.e)2)� {eval ([v2/x]e)}
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eval ((λx.x) ((λy.y) (λz.e)))  (by rule ev/app)
eval (λx.x) cont (2 ((λy.y) (λz.e)))  (by rule ev/lam)
retn (λx.x) cont (2 ((λy.y) (λz.e)))  (by rule ev/app1)
eval ((λy.y) (λz.e)) cont ((λx.x)2)  (by rule ev/app)

eval (λy.y) cont (2 (λz.e)) cont ((λx.x)2)  (by rule ev/lam)
retn (λy.y) cont (2 (λz.e)) cont ((λx.x)2)  (by rule ev/app1)
eval (λz.e) cont ((λy.y)2) cont ((λx.x)2)  (by rule ev/lam)
retn (λz.e) cont ((λy.y)2) cont ((λx.x)2)  (by rule ev/app2)

eval (λz.e) cont ((λx.x)2)  (by rule ev/lam)
retn (λz.e) cont ((λx.x)2)  (by rule ev/app2)

eval (λz.e)  (by rule ev/lam)
retn (λz.e) 6 

Figure 1.3: SSOS evaluation of an expression to a value

These four rules constitute an SSOS specification of call-by-value evaluation; an example of
evaluating the expression (λx.x) ((λy.y) (λz.e)) to a value under this specification is given in
Figure 1.3. Again, each intermediate state is represented by a process state or ordered context.

The SLS framework admits many styles of specification. The SSOS specification above
resides in the concurrent fragment of SLS. (This rewriting-like fragment is called concurrent
because rewriting specifications are naturally concurrent – we can just as easily seed the process
state with two propositions eval(e) and eval(e′) that will evaluate to values concurrently and
independently, side-by-side in the process state.) Specifications in the concurrent fragment of
SLS can take many different forms, a point that we will discuss further in Chapter 5.

On the other end of the spectrum, the deductive fragment of SLS supports the specification
of inductive definitions by the same methodology used to represent inductive definitions in LF
[HHP93]. We can therefore use the deductive fragment of SLS to specify a big-step opera-
tional semantics for call-by-value evaluation by inductively defining the judgment e ⇓ v, which
expresses that the expression e evaluates to the value v. On paper, this big-step operational
semantics is expressed with two inference rules:

λx.e ⇓ λx.e
e1 ⇓ λx.e e2 ⇓ v2 [v2/x]e2 ⇓ v

e1 e2 ⇓ v

Big-step operational semantics specifications are compact and elegant, but they are not particu-
larly modular. As a (rather contrived) example, consider the addition of a incrementing counter

2The term substructural operational semantics merges structural operational semantics [Plo04], which we seek
to generalize, and substructural logic, which forms the basis of our specification framework.

3In particular, we are leaving the first-order quantifiers implicit in this section and using an informal object
language representation of syntax. The actual representation of syntax uses LF terms that adequately encode this
object language, as discussed in Section 4.1.4.

7



October 15, 2012
DRAFT

store 5 eval (((λx.λy.y) count) count)  (by rule ev/app)
store 5 eval ((λx.λy.y) count) cont (2 count)  (by rule ev/app)

store 5 eval (λx.λy.y) cont (2 count) cont (2 count)  (by rule ev/lam)
store 5 retn (λx.λy.y) cont (2 count) cont (2 count)  (by rule ev/app1)

store 5 eval (count) cont ((λx.λy.y)2) cont (2 count)  (by rule ev/count)
store 6 retn (5) cont ((λx.λy.y)2) cont (2 count)  (by rule ev/app2)

store 6 eval (λy.y) cont (2 count)  (by rule ev/lam)
store 6 retn (λy.y) cont (2 count)  (by rule ev/app2)

store 6 eval (count) cont ((λy.y)2)  (by rule ev/count)
store 7 retn (6) cont ((λy.y)2)  (by rule ev/app2)

store 7 eval (6)  (by rule ev/lam)
store 7 retn (6) 6 

Figure 1.4: Evaluation with an imperative counter

count to the language of expressions e. The counter is a piece of runtime state, and every time
count is evaluated, our runtime must return the value of the counter and then increments the
counter.4 To extend the big-step operational semantics with this new feature, we have to revise
all the existing rules so that they mention the running counter:

(count, n) ⇓ (n, n+ 1) (λx.e, n) ⇓ (λx.e, n)

(e1, n) ⇓ (λx.e, n1) (e2, n1) ⇓ (v2, n2) ([v2/x]e2, n2) ⇓ (v, n′)

(e1 e2, n) ⇓ (v, n′)

The simple elegance of our big-step operational semantics has been tarnished by the need to
deal with state, and each new stateful feature requires a similar revision. In contrast, our SSOS
specification can tolerate the addition of a counter without revision to the existing rules; we just
store the counter’s value in an atomic proposition store(n) to the left of the eval(e) or retn(v)
proposition in the ordered context. Because the rules ev/lam, ev/app, ev/app1, and ev/app2
are local, they will ignore this extra proposition, which only needs to be accessed by the rule
ev/count.

ev/count : storen • eval count� {store (n+ 1) • retnn}

In Figure 1.4, we give an example of evaluating (((λx.λy.y) count) count) to a value with a
starting counter value of 5. This specific solution – adding a counter proposition to the left of
the eval or retn – is rather contrived. We want, in general, to be able to add arbitrary state,
and this technique only allows us to add one piece of runtime state easily: if we wanted to

4To keep the language small, we can represent numerals n as Church numerals: 0 = (λf.λx.x), 1 = (λf.λx.fx),
2 = (λf.λx.f(fx)), and so on. Then, n+ 1 = λf.λx.fe if n = λf.λx.e.
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introduce a second counter, where would it go? Nevertheless, the example does foreshadow
how, in Part II of this dissertation, we will show that SSOS specifications in SLS allow for the
modular specification of many programming language features.

An overarching theme of Part II is that we can have our cake and eat it too by deploying the
logical correspondence, an idea that was developed jointly with Ian Zerny and that is explained in
Chapter 5. In Chapter 6, we show how we can use the logical correspondence to directly connect
the big-step semantics and SSOS specifications above; in fact, we can automatically and me-
chanically derive the latter from the former. As our example above showed, big-step operational
semantics do not support combining the specification of a pure feature (like call-by-value evalu-
ation) with the specification of a stateful feature (like the counter). Or, at least, doing so requires
more than concatenating the specifications. Using the automatic transformations described in
Chapter 6, we can specify pure features (like call-by-value evaluation) as a simpler big-step se-
mantics specification, and then we can compose that specification with an SSOS specification of
stateful features (like the counter) by mechanically transforming the big-step semantics part of
the specification into SSOS. In SSOS, the extension is modular: the call-by-value specification
can be extended by just adding new rules for the counter. Further transformations, developed
in joint work with Pfenning [SP11a], create new opportunities for modular extension; this is the
topic of Chapter 7.

Appendix B puts the logical correspondence to work by demonstrating that we can create a
single coherent language specification by composing four different styles of specification. Pure
features are given a natural semantics, whereas stateful, concurrent, and control features are
specified at the most “high-level” SSOS specification style that is appropriate. The automatic
transformations that are the focus of Part II then transform the specifications into a single coher-
ent specification.

Transformations on SLS specifications also allow us to derive abstract analyses (such as con-
trol flow and alias analysis) directly from SSOS specifications. This methodology for program
abstraction, linear logical approximation, is the focus of Chapter 8.

1.3 Invariants in substructural logic
Invariants are fundamental for reasoning about any evolving system. From a verification or
model-checking viewpoint, invariants are usually expressed in terms of temporal logics like LTL
and are usually verified by model checking or exhaustive search [CDE+11, Chapter 10]. Existing
work on verifying properties of rewriting specifications has generally approached the problem
from a model checking perspective.

In Part III we offer a approach to invariants that is complementary to the model checking
approach. From a programming languages perspective, invariants are often associated with types.
Type invariants are well-formedness criteria on programs that are weak enough to be preserved
by state transitions (a property called preservation) but strong enough to allow us to express the
properties we expect to hold of all well-formed program states. In systems free of deadlock, a
common property we want to hold is progress – a well-typed state is either final or it can evolve to
some other state with a state transition. (Even in systems where deadlock is a possibility, progress
can be handled by stipulating that a deadlocked state is final.) Progress and preservation together
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gen state  (by rule gen/app2)
gen state cont ((λx.x)2)  (by rule gen/app1)

gen state cont (2 (λz.e)) cont ((λx.x)2)  (by rule gen/retn)
retn (λy.y) cont (2 (λz.e)) cont ((λx.x)2) 6 

Figure 1.5: Proving well-formedness of one of the states from Figure 1.3

imply the safety property that a language is free of unspecified behavior.
Chapter 9 discusses the use of generative signatures to describe well-formedness invariants

of specifications. Generative signatures look a bit like context-free grammars, and they allow us
to characterize contexts by a describing rewriting rules that generate legal or well-formed process
states in the same way that context-free grammars characterize grammatical strings by describing
rules that generate all grammatical strings.

In our example SSOS specification, a process state that consists of only a single retn(v)
proposition is final, and a well-formed state is any state that consists of an atomic proposition
eval(e) (where e is a closed expression) or retn(λx.e) (where λx.e is a closed expression) to
the left of a series of continuation frames cont(2 e) or cont((λx.e)2). We can characterize all
such states as being generated from an initial atomic proposition gen state under the following
generative signature:

gen/eval : gen state� {eval(e)}
gen/retn : gen state� {retn(λx.e)}

gen/app1 : gen state� {gen state • cont(2 e2)}
gen/app2 : gen state� {gen state • cont((λx.e)2)}

The derivation of one of the intermediate process states from Figure 1.3 is shown in Figure 1.5.
Well-formedness is a global property of specifications. Therefore, if we add state to the

specification, we have to change the description of what counts as a final state and extend the
grammar of well-formed process states. In the case of our counter extension, final states have a
single store(n) proposition to the left of a single retn(v) proposition, and well-formed states are
generated from an initial atomic proposition gen under the following extension to the previous
generative signature:

gen/all : gen� {gen store • gen state}
gen/store : gen store� {store(n)}

The grammar above describes a very coarse invariant of our SSOS specification, and it is
possible to prove that specifications preserve more expressive invariants. An important class of
examples are invariants about the types of expressions and process states, which will be con-
sidered in Chapter 9. For almost any SSOS specification more complicated than the one given
above, type invariants are necessary for proving the progress theorem and concluding that the
specification is safe – that is, free from undefined behavior. Chapter 10 will consider the use of
generative invariants for proving safety properties of specifications.
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1.4 Contributions
The three parts of this dissertation support three different aspects of our central thesis, which we
can state as refined thesis statements which support the central thesis. We will presently discuss
these supporting thesis statements along with the major contributions associated with each the
refinements.

Thesis (Part I): The methodology of structural focalization facilitates the derivation
of logical frameworks as fragments of focused logics.

The first major contribution of Part I of the dissertation is the development of structural focal-
ization and its application to linear logic (Chapter 2) and ordered linear lax logic (Chapter 3).
The second major contribution is the justification of the logical framework SLS as a fragment of
a focused logic, generalizing the hereditary substitution methodology of Watkins [WCPW02].

Thesis (Part II): A logical framework based on a rewriting interpretation of sub-
structural logic supports many styles of programming language specification. These
styles can be formally classified and connected by considering general transforma-
tions on logical specifications.

The major contribution of Part II is the development of the logical correspondence, a method-
ology for extending, classifying, inter-deriving, and modularly extending operational semantics
specifications that are encoded in SLS, with an emphasis on SSOS specifications. The trans-
formations in Chapter 6 connect big-step operational semantics specifications and the ordered
abstract machine-style SSOS semantics that we introduced in Section 1.2. The destination-
adding transformation given in Chapter 7 connects these specifications with the older destination-
passing style of SSOS specification. In both chapters add new opportunities for modular exten-
sion – that is, our ability to add new features to the language specification without revising
existing rules. The transformations in these chapters are implemented in the SLS prototype, as
demonstrated by the development in Appendix B.

Thesis (Part III): The SLS specification of the operational semantics of a program-
ming language is a suitable basis for formal reasoning about properties of the spec-
ified language.

We discuss two techniques for formal reasoning about the properties of SSOS specifications
in SLS. In Chapter 8 we discuss the logical approximation methodology and show that it can
be used to take SSOS specifications and derive known control flow and alias analyses that are
correct by construction. The use of generative signatures to describe invariants is discussed in
Chapter 9, and the use of these invariants to prove safety properties of programming languages
is discussed in Chapter 10.
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Part I

Focusing substructural logics
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Chapter 2

Linear logic

In this chapter, we present linear logic as a logic with the ability to express aspects of state and
state transition in a natural way. In Chapter 3 we will repeat the development in this chapter
in a much richer and more expressive setting, and in Chapter 4 we will carve out a fragment of
this logic to use as the basis of SLS, our logical framework of substructural logical specifica-
tions. These three chapters contribute to the overall thesis by focusing on the design of logical
frameworks:

Thesis (Part I): The methodology of structural focalization facilitates the derivation
of logical frameworks as fragments of focused logics.

The purpose of this chapter is to introduce the methodology of structural focalization; this de-
velopment is one of the major contributions of this work. Linear logic is a fairly simple logic
that nevertheless allows us to consider many of the issues that will arise in richer substructural
logics like the one considered in Chapter 3.

In Section 2.1 we motivate and discuss a traditional account of linear logic, and in Section 2.2
we discuss why this account is insufficient as a logical framework – derivations in linear logic
suffice to establish the existence of a series of state transitions but do not adequately capture the
structure of those transitions. Our remedy for this insufficiency comes in the form of focusing,
Andreoli’s restricted normal form for derivations in linear logic. We discuss focusing for a
polarized presentation of linear logic in Section 2.3.

With focusing, we can describe synthetic inference rules (Section 2.4) that succinctly capture
the structure of focused transitions. In Section 2.5 we discuss a number of ways of modifying the
design of our focused logic to increase the expressiveness of synthetic inference rules; one of the
alternatives we present, the introduction of permeable atomic propositions, will be generalized
and incorporated into the focused presentation of ordered linear lax logic that we discuss in
Chapter 3.

2.1 Introduction to linear logic
Logic as it has been traditionally understood and studied – both in its classical and intuitionistic
varieties – treats the truth of a proposition as a persistent resource. That is, if we have evidence
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A ::= p | !A | 1 | A⊗B | A( B
Γ ::= · | Γ, A (multiset)
∆ ::= · | ∆, A (multiset)

Γ; ∆ −→ A

Γ; p −→ p
id

Γ, A; ∆, A −→ C

Γ, A; ∆ −→ C
copy

Γ; · −→ A

Γ; · −→ !A
!R

Γ, A; ∆ −→ C

Γ; ∆, !A −→ C
!L Γ; · −→ 1

1R
Γ; ∆ −→ C

Γ; ∆,1 −→ C
1L

Γ; ∆1 −→ A Γ; ∆2 −→ B

Γ; ∆1,∆2 −→ A⊗B
⊗R

Γ; ∆, A,B −→ C

Γ; ∆, A⊗B −→ C
⊗L

Γ; ∆, A −→ B

Γ; ∆ −→ A( B
(R

Γ; ∆1 −→ A Γ; ∆2, B −→ C

Γ; ∆1,∆2, A( B −→ C
(L

Figure 2.1: Intuitionstic linear logic

for the truth of a proposition, we can ignore that evidence if it is not needed and reuse the evidence
as many times as we need to. Throughout this document, “logic as it has been traditionally
understood as studied” will be referred to as persistent logic to emphasize this treatment of
evidence.

Linear logic, which was studied and popularized by Girard [Gir87], treats evidence as an
ephemeral resource; the use of an ephemeral resource consumes it, at which point it is unavail-
able for further use. Linear logic, like persistent logic, comes in classical and intuitionistic fla-
vors. We will favor intuitionistic linear logic in part because the propositions of intuitionistic lin-
ear logic (written A, B, C, . . . ) have a more natural correspondence with our physical intuitions
about consumable resources. Linear conjunction A ⊗ B (“A tensor B”) represents the resource
built from the resources A and B; if you have both a bowl of soup and a sandwich, that resource
can be represented by the proposition soup⊗ sandwich. Linear implication A( B (“A lolli B”)
represents a resource that can interact with another resource A to produce a resource B. One
robot with batteries not included could be represented as the linear resource (battery( robot),
and the linear resource (6bucks ( soup ⊗ sandwich) represents the ability to use $6 to obtain
lunch – but only once.1 Linear logic also has a connective !A (“bang A” or “of course A”) repre-
senting a persistent resource that can be used to generate any number of A resources, including
zero. Your local Panera, which allows six dollars to be exchanged for both soup and a sandwich
any number of times, can be represented as the resource !(6bucks( soup⊗ sandwich).

Figure 2.1 presents a standard sequent calculus for linear logic, in particular the multiplica-

1Conjunction will always bind more tightly than implication, so this is equivalent to the proposition 6bucks (
(soup⊗ sandwich).
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tive, exponential fragment of intuitionistic linear logic (or MELL), so called because the con-
nectives 1, A ⊗ B, and A ( B are considered to be the multiplicative connectives, and the
connective !A is the exponential connective of intuitionistic linear logic.2 It corresponds most
closely to Barber’s dual intuitionistic linear logic [Bar96], but also to Andreoli’s dyadic system
[And92] and Chang et al.’s judgmental analysis of intuitionistic linear logic [CCP03].

The propositions of intuitionistic linear logic, and linear implication in particular, capture a
notion of state change: we can transition from a state where we have both a battery and the
battery-less robot (represented, as before, by the linear implication battery ( robot) to a state
where we have the battery-endowed (and therefore presumably functional) robot (represented by
the proposition robot). In other words, the proposition

battery ⊗ (battery( robot)( robot

is provable in linear logic. These transitions can be chained together as well: if we start out with
6bucks instead of battery but we also have the persistent ability to turn 6bucks into a battery –
just like we turned $6 into a bowl of soup and a salad at Panera – then we can ultimately get our
working robot as well. Written as a series of transitions, the picture looks like this:

$6 (1)

battery-less robot (1)

turn $6 into a battery
(all you want)

;

battery (1)

battery-less robot (1)

turn $6 into a battery
(all you want)

;

robot (1)

turn $6 into a battery
(all you want)

In linear logic, these transitions correspond to the provability of the proposition

!(6bucks( battery)⊗ 6bucks⊗ (battery( robot)( robot.

A derivation of this proposition is given in Figure 2.2.3

It is precisely because linear logic contains this intuitive notion of state and state transition
that a rich line of work, dating back to Chirmar’s 1995 dissertation, has sought to use linear logic
as a logical framework for describing stateful systems [Chi95, CP02, CPWW02, Pfe04, Mil09,
PS09, CS09].

2.2 Logical frameworks
Generally speaking, logical frameworks use the structure of proofs in a logic (like linear logic)
to describe the structures we’re interested in (like the process of obtaining a robot). There are

2In this chapter we will mostly ignore the additive connectives of intuitionistic linear logic 0, A ⊕ B, >, and
A N B and will entirely ignore the first-order connectives ∃x.A and ∀x.A. The “why not” connective ?A from
classical linear logic is sometimes treated as a second exponential connective in intuitionistic linear logic [CCP03],
but we will never ask “why not?” in the context of this dissertation.

3In Chapter 4 (and Section 4.7.2 in particular) we see that this view isn’t quite precise enough, and that the “best”
representation of state change from the state A to the state B isn’t really captured by derivations of the proposition
A( B or by derivations of the sequent ·;A −→ B. However, this view remains a simple and useful one; Cervesato
and Scedrov cover it thoroughly in the context of intuitionistic linear logic [CS09].
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Γ; 6bucks −→ 6bucks
init

Γ; battery −→ battery
init

Γ; 6bucks, 6bucks( battery −→ battery
(L

Γ; 6bucks −→ battery
copy

Γ; robot −→ robot
init

Γ; 6bucks, battery( robot −→ robot
(L

Γ; 6bucks⊗ (battery( robot) −→ robot
⊗L

·; !(6bucks( battery), 6bucks⊗ (battery( robot) −→ robot
!L

·; !(6bucks( battery)⊗ 6bucks⊗ (battery( robot) −→ robot
⊗L

·; · −→ !(6bucks( battery)⊗ 6bucks⊗ (battery( robot)( robot
(R

Figure 2.2: Proving that a transition is possible (where we let Γ = 6bucks( battery)

two related reasons why linear logic as described in Figure 2.1 is not immediately useful as a
logical framework. First, the structure of the derivation in Figure 2.2 doesn’t really match the
intuitive two-step transition that we sketched out above. Second, there are lots of derivations
of our example proposition according to the rules in Figure 2.1, even though there’s only one
“real” series of transitions that get us to a working robot. The use of !L, for instance, could
be permuted up past the ⊗L and then past the (L into the left branch of the proof. These
differences represent inessential nondeterminism in proof construction – they just get in the way
of the structure that we are trying to capture.

This is a general problem in the construction of logical frameworks. We’ll discuss two solu-
tions in the context of LF, a logical framework based on dependent type theory that has proved
to be a suitable means of encoding a wide variety of deductive systems, such as logics and pro-
gramming languages [HHP93]. The first solution is to define an appropriate equivalence class of
proofs, and the second solution is to define a complete set of canonical proofs.

Defining an appropriate equivalence relation on proofs can be an effective way of handling
this inessential nondeterminism. In linear logic as presented above, if the permutability of rules
like !L and ⊗L is problematic, we can instead reason about equivalence classes of derivations.
Derivations that differ only in the ordering of !L and ⊗L rules belong in the same equivalence
class (which means we treat them as equivalent):

D
Γ, A; ∆, B, C −→ D

Γ, A; ∆, B ⊗ C −→ D
⊗L

Γ; ∆, !A,B ⊗ C −→ D
!L

≡

D
Γ, A; ∆, B, C −→ D

Γ; ∆, !A,B,C −→ D
!L

Γ; ∆, !A,B ⊗ C −→ D
⊗L

In LF, lambda calculus terms (which correspond to derivations by the Curry-Howard corre-
spondence) are considered modulo the least equivalence class that includes
∗ α-equivalence (λx.N ≡ λy.N [y/x] if y 6∈ FV (N)),

∗ β-equivalence ((λx.M)N ≡M [N/x] if x 6∈ FV (N)), and

∗ η-equivalence (N ≡ λx.N x).
The weak normalization property for LF establishes that, given any typed LF term, we can find
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an equivalent term that is β-normal (no β-redexes of the form (λx.M)N exist) and η-long (re-
placing N with λx.N x anywhere would introduce a β-redex or make the term ill-typed). In any
given equivalence class of typed LF terms, all the β-normal and η-long terms are α-equivalent.
Therefore, because α-equivalence is decidable, the equivalence of typed LF terms is decidable.

The uniqueness of β-normal and η-long terms within an equivalence class of lambda calculus
terms (modulo α-equivalence, which we will henceforth take for granted) makes these terms use-
ful as canonical representatives of equivalence classes. In Harper, Honsell, and Plotkin’s original
formulation of LF, a deductive system is said to be adequately encoded as an LF type family
in the case that there is a compositional bijection between the formal objects in the deductive
system and these β-normal, η-long representatives of equivalence classes [HHP93], a topic we
will return to in Section 4.1.4.

Modern presentations of LF, such as Harper and Licata’s [HL07], follow the approach de-
veloped by Watkins et al. [WCPW02] and define the logical framework so that it only contains
these β-normal, η-long canonical forms of LF. This presentation of LF is called Canonical LF to
distinguish it from the original presentation of LF in which the β-normal, η-long terms are just
a refinement of terms. A central component in this approach is hereditary substitution. Hered-
itary substitution also establishes a normalization property for LF. Using hereditary substitution
we can easily take a regular LF term and transform it into a Canonical LF term. By a separate
theorem, we can prove that the normalized term will be equivalent to the original term [MC12].

Our analogue to the canonical forms of LF will be the focused derivations of linear logic that
are presented in the next section. In Section 2.3 below, we will present focused linear logic and
see that there is exactly one focused derivation that derives the proposition

!(6bucks( battery)⊗ 6bucks⊗ (battery( robot)( robot.

We will furthermore see that the structure of this derivation matches the intuitive transition inter-
pretation, a point that is reinforced by the discussion of synthetic inference rules in Section 2.4.

2.3 Focused linear logic
Andreoli’s original motivation for introducing focusing was not to describe a logical framework,
it was to describe a foundational logic programming paradigm based on proof search in classical
linear logic [And92]. The existence of multiple proofs that differ in inessential ways is particu-
larly problematic for proof search, as inessential differences between derivations correspond to
unnecessary choice points that a proof search procedure will need to backtrack over.

The development in this section introduces structural focalization, a methodology for deriv-
ing the correctness of a focused sequent calculus (Theorem 2.5 and Theorem 2.6, Section 2.3.7)
as a consequence of the internal completeness (identity expansion, Theorem 2.3, Section 2.3.5)
and internal soundness (cut admissibility, Theorem 2.4, Section 2.3.6) of the focused system.
This methodology is a substantial refinement of the method used by Chaudhuri to establish the
correctness of focused intuitionistic linear logic [Cha06], and because it relies on structural meth-
ods, structural focalization is more amenable to mechanized proof [Sim11]. Our focused sequent
calculus also departs from Chaudhuri’s by treating asynchronous rules as confluent rather than
fixed, a point that will be discussed in Section 2.3.8.
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2.3.1 Polarity
The first step in describing a focused sequent calculus is to classify connectives into two groups
[And92]. Some connectives, such as linear implicationA( B, are called asynchronous because
their right rules can always be applied eagerly, without backtracking, during bottom-up proof
search. Other connectives, such as multiplicative conjunction A ⊗ B, are called synchronous
because their right rules cannot be applied eagerly. For instance, if we are trying to prove the
sequent A⊗ B −→ B ⊗ A, the ⊗R rule cannot be applied eagerly; we first have to decompose
A ⊗ B on the left using the ⊗L rule. The terms asynchronous and synchronous make a bit
more sense in a one-sided classical sequent calculus; in intuitionistic logics, it is common to call
asynchronous connectives right-asynchronous and left-synchronous. Similarly, it is common to
call synchronous connectives right-synchronous and left-asynchronous. We will instead use a
different designation, calling the (right-)synchronous connectives positive (!, 0, ⊕, 1, and ⊗ in
full propositional linear logic) and calling the (right-)asynchronous connectives negative ((,
> and N in full propositional linear logic); this assignment is called the proposition’s polarity.
Each atomic proposition must be assigned to have only one polarity, though this assignment can
be made arbitrarily.

The nontrivial result of focusing is that it is possible to separate a proof into two strictly
alternating phases. In inversion phases, positive propositions on the left and negative propositions
on the right are eagerly and exhaustively decomposed using invertible rules.4 In focused phases,
a single proposition is selected (the proposition in focus, which is either a positive proposition
in right focus or a negative proposition in left focus). This proposition is then decomposed
repeatedly and exhaustively using rules that are mostly non-invertible.

If we consider this discipline applied to our robot example where all atoms have been as-
signed positive polarity, we would begin with an inversion phase, decomposing the negative
implication on the right and the positive tensor and exponential on the left:

...
6bucks( battery; 6bucks, battery( robot −→ robot

6bucks( battery; 6bucks⊗ (battery( robot) −→ robot
⊗L

·; !(6bucks( battery), 6bucks⊗ (battery( robot) −→ robot
!L

·; !(6bucks( battery)⊗ 6bucks⊗ (battery( robot) −→ robot
⊗L

·; · −→ !(6bucks( battery)⊗ 6bucks⊗ (battery( robot)( robot
(R

Once we reach the topmost sequent in the above fragment, we have to pick a negative proposition
on the left or a positive proposition on the right as our focus in order to proceed. The correct
choice in this context is to pick the negative proposition 6bucks ( battery in the persistent
context and decompose it using the non-invertible rule(L. Because the subformula 6bucks is

4Synchronicity or polarity, a property of connectives, is closely connected to (and sometimes conflated with)
a property of rules called invertibility; a rule is invertible if the conclusion of the rule implies the premises. So
(R is invertible (Γ; ∆ −→ A( B implies Γ; ∆, A −→ B) but (L is not (Γ; ∆, A( B −→ C does not
imply that ∆ = ∆1,∆2 such that Γ; ∆1 −→ A and Γ; ∆2, B −→ C). Rules that can be applied eagerly need to
be invertible, so asynchronous connectives have invertible right rules and synchronous connectives have invertible
left rules. Therefore, in the literature a common synonym for asynchronous/negative is right-invertible, and the
analogous synonym for synchronous/positive is left-invertible.

20



October 15, 2012
DRAFT

(↓A−)◦ = (A−)◦

(p+)◦ = p+ (p+)⊕ = p+ (p+)	 = ↑p+

(!A−)◦ = !(A−)◦ (!A)⊕ = !A	 (!A)	 = ↑(!A	)
(1)◦ = 1 (1)⊕ = 1 (1)	 = ↑1

(A+ ⊗B+)◦ = (A+)◦ ⊗ (B+)◦ (A⊗B)⊕ = A⊕ ⊗B⊕ (A⊗B)	 = ↑(A⊕ ⊗B⊕)
(↑A+)◦ = (A+)◦

(p−)◦ = p− (p−)⊕ = ↓p− (p−)	 = p−

(A+ ( B−)◦ = (A+)◦( (B−)◦ (A( B)⊕ = ↓(A⊕( B	) (A( B)	 = A⊕( B	

Figure 2.3: De-polarizing and polarizing (with minimal shifts) propositions of MELL

positive and ends up on the right side in the subderivation, the focusing discipline requires that
we prove it immediately with the id rule. Letting Γ = 6bucks( battery, this looks like this:

Γ; 6bucks −→ 6bucks
id

...
Γ; battery( robot, battery −→ robot

Γ; 6bucks, battery( robot, 6bucks( battery −→ robot
(L

Γ; 6bucks, battery( robot −→ robot
...

copy

The trace (that is, the pair of a single bottom sequent and a set of unproved top sequents) of
an inversion phase stacked on top of a focused phase is called a synthetic inference rule by
Chaudhuri, a point we will return to in Section 2.4.

2.3.2 Polarization
At this point, there is an important choice to make. One way forward is to treat positive and
negative propositions as syntactic refinements of the set of all propositions, and to develop a
focused presentation for intuitionistic linear logic with the connectives and propositions that we
have already considered, as Chaudhuri did in [Cha06]. The other way forward is to treat positive
and negative propositions as distinct syntactic classes A+ and A− with explicit inclusions, called
shifts, between them. This is called polarized linear logic. The positive proposition ↓A−, pro-
nounced “downshift A” or “down A,” has a subterm that is a negative proposition; the negative
proposition ↑A+, pronounced “upshift A” or “up A,” has a subterm that is a positive proposition.

A+ ::= p+ | ↓A− | !A− | 1 | A+ ⊗B+

A− ::= p− | ↑A+ | A+ ( B−

The relationship between unpolarized and polarized linear logic is given by two erasure func-
tions (A+)◦ and (A−)◦ that wipe away all the shifts; this function is defined in Figure 2.3. In the
other direction, every proposition in unpolarized linear logic has an polarized analogue with a
minimal number of shifts, given by the functions A⊕ and A	 in Figure 2.3. Both of these func-
tions are partial inverses of erasure, since (A⊕)◦ = (A	)◦ = A; we will generally refer to partial
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(p+)m+ = ↓↑p+ (p+)m− = ↑p+

(!A)m+ = ↓↑!(A)m− (!A)m− = ↑!(A)m−

(1)m+ = ↓↑1 (1)m− = ↑1
(A⊗B)m+ = ↓↑((A)m+ ⊗ (B)m+) (A⊗B)m− = ↑(A⊕ ⊗B⊕)

(p−)m+ = ↓p− (p−)m− = ↑↓p−
(A( B)m+ = ↓((A)m+ ( (B)m−) (A( B)m− = ↑↓((A)m+ ( (B)m−)

Figure 2.4: Fully-shifting polarization strategy for MELL

inverses of erasure as polarization strategies. The strategies A⊕ and A	 are minimal, avoiding
shifts wherever possible, but there are many other possible strategies, such as the fully-shifting
strategy that always adds either one or two shifts between every connective, which we can write
as (A)m+ = B+ and (A)m− = B−, defined in Figure 2.4.

Shifts turn out to have a profound impact on the structure of focused proofs, though erasure
requires that they have no impact on provability. For instance, the proofs of A in Chaudhuri’s
focused presentation of linear logic are isomorphic to the proofs of (A)⊕ in the polarized logic
discussed below,5 whereas the proofs of (A)m+ in polarized logic are isomorphic to the unfocused
proofs of linear logic as described in Figure 2.1. Other polarization strategies correspond to
different focused logics, as explored by Liang and Miller in [LM09], so the presentation of
polarized linear logic below, like Liang and Miller’s LJF, can be seen in two ways: as a focused
logic in its own right, and as a framework for defining many focused logics (one per polarization
strategy). As such, the strongest statement of the correctness of focusing is based on erasure:
there is an unfocused derivation of (A+)◦ or (A−)◦ if and only if there is a focused derivation of
A+ or A−. Most existing proofs of the completeness of focusing only verify a weaker property:
that there is an unfocused derivation of A if and only if there is a focused derivation of A•, where
A• is some polarization strategy. The only exception seems to be Zeilberger’s proof for classical
persistent logic [Zei08b].

In this dissertation, we will be interested only in the structure of focused proofs, which corre-
sponds to using the polarization strategy given byA⊕ andA	. Therefore, following Chaudhuri, it
would be possible to achieve our objectives without the use of polarization. Our choice is largely
based on practical considerations: the use of polarized logic simplifies the proof of identity ex-
pansion in Section 2.3.5 and the proof of completeness in Section 2.3.7. That said, polarized
logic is an independently significant and currently active area of research. For instance, the
Curry-Howard interpretation of polarized persistent logic has been studied by Levy as Call-by-
Push-Value [Lev04]. The erasable influence of the shifts on the structure (but not the existence)
of proofs is also important in the context of theorem proving. For instance, a theorem prover
for polarized logic can imitate focused proof search by using the (A)⊕ polarization strategy and
unfocused proof search by using the (A)m+ polarization strategy [MP09].

5This isomorphism holds for Chaudhuri’s focused presentation of linear logic precisely because his treatment of
atomic propositions differs from Andreoli’s. This isomorphism does not hold relative to focused systems that follow
Andreoli’s design, a point we will return to in Section 2.5.
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2.3.3 Focused sequent calculus
Usually, focused logics are described as having multiple sequent forms. For intuitionistic logics,
there need to be at least three sequent forms:

∗ Γ; ∆ ` [A+] (the right focus sequent, where the proposition A+ is in focus),

∗ Γ; ∆ ` C (the inversion sequent), and

∗ Γ; ∆, [A−] ` C (the left focus sequent, where the proposition A− is in focus).

It is also possible to distinguish a fourth sequent form, the stable sequents, inversion sequents
Γ; ∆ ` C where no asynchronous inversion remains to be done. A sufficient condition for stabil-
ity is that the context ∆ contains only negative propositions A− and the succedent C is a positive
proposition A+. However, this cannot be a necessary condition for stability due to the presence
of atomic propositions. If the process of inversion reaches a positive atomic proposition p+ on the
left or a negative atomic proposition p− on the right, the proposition can be decomposed no fur-
ther. When we reach an atomic proposition, we are therefore forced to suspend decomposition,
either placing a suspended positive atomic proposition 〈p+〉 in ∆ or placing a suspended negative
proposition 〈p−〉 as the succedent. For technical reasons discussed below in Section 2.3.4, our
sequent calculus can handle arbitrary suspended propositions, not just suspended atomic propo-
sitions, and suspended propositions are always treated as stable, so Γ;A−, B−, C− ` D+ and
Γ; 〈A+〉, B−, 〈C+〉 ` 〈D−〉 are both stable sequents.

Another reasonable presentation of linear logic, and the one we will adopt in this section,
uses only one sequent form, Γ; ∆ ` U , that generalizes what is allowed to appear in the linear
context ∆ or in the succedent U . We will use this interpretation to understand the logic described
in Figure 2.5. In addition to propositions A+, A− and positive suspended positive propositions
〈A+〉, the grammar of contexts ∆ allows them to contain left focuses [A−]. Likewise, a succedent
U can be a stable positive proposition A+, a suspended negative proposition 〈A−〉, a focused
positive proposition [A+], or an inverting negative proposition A−. We will henceforth write ∆
and U to indicate the refinements of ∆ and U that do not contain any focus.

By adding a side condition to the three rules focusR, focusL, and copy that neither the context
∆ nor the succedent U can contain an in-focus proposition [A+] or [A−], derivations can maintain
the invariant that there is always at most one proposition in focus in any sequent, effectively
restoring the situation in which there are three distinct judgments. Therefore, from this point
on, we will only consider sequents Γ; ∆ ` U with at most one focus. Pfenning, who developed
this construction in [Pfe12c], calls this invariant the focusing constraint. The focusing constraint
alone gives us what Pfenning calls a chaining logic [Pfe12c] and which Laurent calls a weakly
focused logic [Lau04].6 We obtain a fully focused logic by further restricting the three critical
rules focusR, focusL, and copy so that they only apply when the sequent below the line is stable.
In light of this additional restriction, whenever we consider a focused sequent Γ; ∆, [A−] ` U or
Γ; ∆ ` [A+], we can assume that ∆ and U are stable.

The persistent context of a focused derivation can always be weakened by adding more per-
sistent resources. This weakening property can be phrased as an admissible rule, which we

6Unfortunately, I made the meaning of “weak focusing” less precise by calling a different sort of logic weakly
focused in [SP11b]. That weakly focused system had an additional restriction that invertible rules could not be
applied when any other proposition was in focus, which is what Laurent called a strongly +-focused logic.
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A+ ::= p+ | ↓A− | !A− | 1 | A+ ⊗B+

A− ::= p− | ↑A+ | A+ ( B−

Γ ::= · | Γ, A− (multiset)
∆ ::= · | ∆, A+ | ∆, A− | ∆, [A−] | ∆, 〈A+〉 (multiset)
U ::= A− | A+ | [A+] | 〈A−〉

Γ; ∆ ` U

Γ; ∆ ` [A+]

Γ; ∆ ` A+ focus∗R
Γ; ∆, [A−] ` U
Γ; ∆, A− ` U

focus∗L
Γ, A−; ∆, [A−] ` U

Γ, A−; ∆ ` U
copy∗

Γ; ∆, 〈p+〉 ` U
Γ; ∆, p+ ` U η+

Γ; 〈A+〉 ` [A+]
id+

Γ; ∆ ` 〈p−〉
Γ; ∆ ` p− η−

Γ; [A−] ` 〈A−〉 id−

Γ; ∆ ` A+

Γ; ∆ ` ↑A+
↑R

Γ; ∆, A+ ` U
Γ; ∆, [↑A+] ` U

↑L
Γ; ∆ ` A−

Γ; ∆ ` [↓A−]
↓R

Γ; ∆, A− ` U
Γ; ∆, ↓A− ` U

↓L

Γ; · ` A−

Γ; · ` [!A−]
!R

Γ, A−; ∆ ` U
Γ; ∆, !A− ` U !L

Γ; · ` [1]
1R

Γ; ∆ ` U
Γ; ∆,1 ` U 1L

Γ; ∆1 ` [A+] Γ; ∆2 ` [B+]

Γ; ∆1,∆2 ` [A+ ⊗B+]
⊗R

Γ; ∆, A+, B+ ` U
Γ; ∆, A+ ⊗B+ ` U

⊗L

Γ; ∆, A+ ` B−

Γ; ∆ ` A+ ( B−
(R

Γ; ∆1 ` [A+] Γ; ∆2, [B
−] ` U

Γ; ∆1,∆2, [A
+ ( B−] ` U

(L

Figure 2.5: Focused intuitionstic linear logic

indicate using a dashed line:
Γ; ∆ ` U

Γ,Γ′; ∆ ` U weaken

In developments following Pfenning’s structural cut admissibility methodology [Pfe00], it is
critical that the weakening theorem does not change the structure of proofs: that the structure of
the derivation Γ; ∆ ` U is unchanged when we weaken it to Γ,Γ′; ∆ ` U . It turns out that the
development in this chapter does not rely on this property.

Suspended propositions (〈A+〉 and 〈A−〉) and the four rules that interact with suspended
propositions (id+, id−, η+, and η−) are the main nonstandard aspect of this presentation. The
η+ and η− rules are restricted to atomic propositions, and there is no other way for suspended
propositions to be introduced into the context with rules. Therefore, it seems reasonable to
restrict id+ to atomic propositions as well. However, this seemingly unnecessary generality will

24



October 15, 2012
DRAFT

make it much easier to establish the standard metatheory of this sequent calculus. To see why
this is the case, we will turn our attention to suspended propositions and the four admissible rules
(two focal substitution principles and two identity expansion principles) that interact with them.

2.3.4 Suspended propositions
In unfocused sequent calculi, it is generally possible to restrict the id rule to atomic propositions
(as shown in Figure 2.1). The general id rule, which concludes Γ;A −→ A for all propositions
A, is admissible just as the cut rule is admissible. But while the cut rule can be eliminated
completely, the atomic id rule must remain. This is related to the logical interpretation of atomic
propositions as stand-ins for unknown propositions. All sequent calculi, focused or unfocused,
have the subformula property: every rule breaks down a proposition, either on the left or the
right of the turnstile “`”, when read from bottom to top. We are unable to break down atomic
propositions any further (they are unknown), thus the id rule is necessary at atomic propositions.
If we substitute a concrete proposition for some atomic proposition, the structure of the proof
stays exactly the same, except that instances of initial sequents become admissible instances of
the identity theorem.

To my knowledge, all published proof systems for focused logic have incorporated a focused
version of the id rule that also applies only to atomic propositions. This treatment is not incorrect
and is obviously analogous to the id rule from the unfocused system. Nevertheless, I believe this
to be a design error, and it is one that has historically made it unnecessarily difficult to prove
the identity theorem for focused systems. The alternative developed in this chapter is the use
of suspensions. Suspended positive propositions 〈A+〉 only appear in the linear context ∆, and
suspended negative propositions 〈A−〉 only appear as succedents. They are treated as stable (we
never break down a suspended proposition) and are only used to immediately prove a proposition
in focus with one of the identity rules id+ or id−. The rules id+ and id− are more general focused
versions of the unfocused id rule. This extra generality does not influence the structure of proofs
because suspended propositions can only be introduced into the context or the succedent by the
η+ and η− rules, and those rules are restricted to atomic propositions.

Suspended positive propositions act much like regular variables in a natural deduction sys-
tem. The positive identity rule id+ allows us to prove any positive proposition given that the
positive proposition appears suspended in the context. There is a corresponding substitution prin-
ciple for focal substitutions that has a natural-deduction-like flavor: we can substitute a derivation
right-focused on A+ for a suspended positive proposition 〈A+〉 in a context.

Theorem 2.1 (Focal substitution (positive)).
If Γ; ∆ ` [A+] and Γ; ∆′, 〈A+〉 ` U , then Γ; ∆′,∆ ` U .

Proof. Straightforward induction over the second given derivation, as in a proof of regular sub-
stitution in a natural deduction system. If the second derivation is the axiom id+, the result
follows immediately using the first given derivation.

As discussed above in Section 2.3.3, because we only consider focused sequents that are other-
wise stable, we assume that ∆ in the statement of Theorem 2.1 is stable by virtue of it appearing
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in the focused sequent Γ; ∆ ` [A+]. The second premise Γ; ∆′, 〈A+〉 ` U , on the other hand,
may be a right-focused sequent Γ; ∆′, 〈A+〉 ` [B+], a left-focused sequent Γ; ∆′′, [B−], 〈A+〉 `
U , or an inverting sequent.

Suspended negative propositions are a bit less intuitive than suspended positive propositions.
While a derivation of Γ; ∆′, 〈A+〉 ` U is missing a premise that can be satisfied by a derivation
of Γ; ∆ ` [A+], a derivation of Γ; ∆ ` 〈A−〉 is missing a continuation that can be satisfied by
a derivation of Γ; ∆′, [A−] ` U . The focal substitution principle, however, still takes the basic
form of a substitution principle.

Theorem 2.2 (Focal substitution (negative)).
If Γ; ∆ ` 〈A−〉 and Γ; ∆′, [A−] ` U , then Γ; ∆′,∆ ` U .

Proof. Straightforward induction over the first given derivation; if the first derivation is the axiom
id−, the result follows immediately using the second given derivation.

Unlike cut admissibility, which we discuss in Section 2.3.6, both of the focal substitution
principles are straightforward inductions over the structure of the derivation containing the sus-
pended proposition. As an aside, when we encode the focused sequent calculus for persistent
logic in LF, a suspended positive premise can be naturally encoded as a hypothetical right fo-
cus. This encoding makes the id+ rule an instance of the hypothesis rule provided by LF and
establishes Theorem 2.1 “for free” as an instance of LF substitution. This is possible to do for
negative focal substitution as well, but it is counterintuitive and relies on a peculiar use of LF’s
uniform function space [Sim11].

The two substitution principles can be phrased as admissible rules for building derivations,
like the weaken rule above:

Γ; ∆ ` [A+] Γ; ∆′, 〈A+〉 ` U
Γ; ∆′,∆ ` U subst+

Γ; ∆ ` 〈A−〉 Γ; ∆′, [A−] ` U
Γ; ∆′,∆ ` U subst−

Note the way in which these admissible substitution principles generalize the logic: subst+

or subst− are the only rules we have discussed that allow us to introduce non-atomic suspended
propositions, because only atomic suspended propositions are introduced explicitly by rules η+

and η−.

2.3.5 Identity expansion
Suspended propositions appear in Figure 2.5 in two places: in the identity rules, which we have
just discussed and connected with the focal substitution principles, and in the rules marked η+

and η−, which are also the only mention of atomic propositions in the presentation. It is here that
we need to make a critical shift of perspective from unfocused to focused logic. In an unfocused
logic, the rules nondeterministically break down propositions, and the initial rule id puts an end
to this process when an atomic proposition is reached. In a focused logic, the focus and inversion
phases must break down a proposition all the way until a shift is reached. The two η rules are
what put an end to this when an atomic proposition is reached, and they work hand-in-glove with
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the two id rules that allow these necessarily suspended propositions to successfully conclude a
right or left focus.

Just as the id rule is a particular instance of the admissible identity sequent Γ;A −→ A in
unfocused linear logic, the atomic suspension rules η+ and η− are instances of an admissible
identity expansion rule in focused linear logic:

Γ; ∆, 〈A+〉 ` U
Γ; ∆, A+ ` U η+

Γ; ∆ ` 〈A−〉
Γ; ∆ ` A− η−

In other words, the admissible identity expansion rules allow us to act as if the η+ and η− rules
apply to arbitrary propositions, not just atomic propositions. The atomic propositions must be
handled by an explicit rule, but the general principle is admissible.

The two admissible identity expansion rules above can be rephrased as an identity expansion
theorem:

Theorem 2.3 (Identity expansion).
∗ If Γ; ∆, 〈A+〉 ` U , then Γ; ∆, A+ ` U .
∗ If Γ; ∆ ` 〈A−〉, then Γ; ∆ ` A−.

Proof. Mutual induction over the structure of the proposition A+ or A−, with a critical use of
focal substitution in each case.

Most of the cases of this proof are represented in Figure 2.6. The remaining case (for the
multiplicative unit 1) is presented in Figure 2.7 along with the cases for the additive connectives
0, ⊕, >, and N, which are neglected elsewhere in this chapter. (Note that in Figures 2.6 and 2.7
we omit polarity annotations from propositions as they are always clear from the context.)

The admissible identity expansion rules fit with an interpretation of positive atomic proposi-
tions as stand-ins for arbitrary positive propositions and of negative atomic propositions as stand-
ins for negative atomic propositions: if we substitute a proposition for some atomic proposition,
all the instances of atomic suspension corresponding to that rule become admissible instances of
identity expansion.

The usual identity principles are corollaries of identity expansion:

Γ; 〈A+〉 ` [A+]
id+

Γ; 〈A+〉 ` A+
focusR

Γ;A+ ` A+ η+

Γ; [A−] ` 〈A−〉 id−

Γ;A− ` 〈A−〉
focusL

Γ;A− ` A− η−

2.3.6 Cut admissibility
Cut admissibility, Theorem 2.4 below, mostly follows the well-worn contours of a structural cut
admissibility argument [Pfe00]. A slight inelegance of the proof given here is that some very
similar cases must be considered more than once in different parts of the proof. The right com-
mutative cases – cases in which the last rule in the second given derivation is an invertible rule
that is not decomposing the principal cut formula A+ – must be repeated in parts 1 and 4, for
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D
Γ; ∆, 〈↓A〉 ` U
Γ; ∆, ↓A ` U η+ =⇒

Γ; [A] ` 〈A〉 id
−

Γ;A ` 〈A〉
focusL

Γ;A ` A η−

Γ;A ` [↓A]
↓R D

Γ; ∆, 〈↓A〉 ` U
Γ; ∆, A ` U subst+

Γ; ∆, ↓A ` U
↓L

D
Γ; ∆, 〈!A〉 ` U
Γ; ∆, !A ` U η+ =⇒

Γ, A; [A] ` 〈A〉 id
−

Γ, A; · ` 〈A〉
copy

Γ, A; · ` A η−

Γ, A; · ` [!A]
!R

D
Γ; ∆, 〈!A〉 ` U

Γ, A; ∆, 〈!A〉 ` U weaken

Γ, A; ∆ ` U subst+

Γ; ∆, !A ` U !L

D
Γ; ∆, 〈A⊗B〉 ` U
Γ; ∆, A⊗B ` U η+ =⇒

Γ; 〈A〉 ` [A]
id+

Γ; 〈B〉 ` [B]
id+

Γ; 〈A〉, 〈B〉 ` [A⊗B]
⊗R D

Γ; ∆, 〈A⊗B〉 ` U
Γ; ∆, 〈A〉, 〈B〉 ` U subst+

Γ; ∆, 〈A〉, B ` U η+

Γ; ∆, A,B ` U η+

Γ; ∆, A⊗B ` U
⊗L

D
Γ; ∆ ` 〈↑A〉
Γ; ∆ ` ↑A η− =⇒

D
Γ; ∆ ` 〈↑A〉

Γ; 〈A〉 ` [A]
id+

Γ; 〈A〉 ` A
focusR

Γ;A ` A η+

Γ; [↑A] ` A
↑L

Γ; ∆ ` A subst−

Γ; ∆ ` ↑A
↑R

D
Γ; ∆ ` 〈A( B〉
Γ; ∆ ` A( B

η− =⇒

D
Γ; ∆ ` 〈A( B〉

Γ; 〈A〉 ` [A]
id+

Γ; [B] ` 〈B〉 id
−

Γ; 〈A〉, [A( B] ` 〈B〉
(L

Γ; ∆, 〈A〉 ` 〈B〉 subst−

Γ; ∆, 〈A〉 ` B η−

Γ; ∆, A ` B η+

Γ; ∆ ` A( B
(R

Figure 2.6: Identity expansion – restricting η+ and η− to atomic propositions
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D
Γ; ∆, 〈1〉 ` U
Γ; ∆,1 ` U η+

=⇒

Γ; · ` [1]
1R D

Γ; ∆, 〈1〉 ` U
Γ; ∆ ` U subst+

Γ; ∆,1 ` U
1L

D
Γ; ∆, 〈0〉 ` U
Γ; ∆,0 ` U η+

=⇒ Γ; ∆,0 ` U
0L

D
Γ; ∆, 〈A⊕B〉 ` U
Γ; ∆, A⊕B ` U η+

=⇒

Γ; 〈A〉 ` [A]
id+

Γ; ∆, 〈A〉 ` [A⊕B]
⊕R1

D
Γ; ∆, 〈A⊕B〉 ` U

Γ; ∆, 〈A〉 ` U subst+

Γ; ∆, A ` U η+
...

Γ; ∆, B ` U
Γ; ∆, A⊕B ` U

⊕L

D
Γ; ∆ ` 〈>〉
Γ; ∆ ` > η−

=⇒ Γ; ∆ ` > >R

D
Γ; ∆ ` 〈ANB〉
Γ; ∆ ` ANB

η−
=⇒

D
Γ; ∆ ` 〈ANB〉

Γ; [A] ` 〈A〉 id
−

Γ; [ANB] ` 〈A〉
NL1

Γ; ∆ ` 〈A〉 subst−

Γ; ∆ ` A η−
...

Γ; ∆ ` B
Γ; ∆ ` ANB

NR

Figure 2.7: Identity expansion for units and additive connectives

instance. (Pfenning’s classification of the cases of cut admissibility into principal, left commuta-
tive, and right commutative cuts is discussed in Section 3.4.) In addition to this duplication, the
proof of part 4 is almost identical in form to the proof of part 5. The proof of cut admissibility in
the next chapter will eliminate both forms of duplication.

The most important caveat about cut admissibility is that it is only applicable in the absence of
any non-atomic suspended propositions. If we did not make this restriction, then in Theorem 2.4,
part 1, we might encounter a derivation of Γ; 〈A⊗B〉 ` [A⊗B] that concludes with id+ being
cut into the derivation

E
Γ; ∆′, A,B ` U

Γ; ∆′, A⊗B ` U
⊗R

in which case there is no clear way to proceed and prove Γ; ∆′, 〈A⊗B〉 ` U .
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Theorem 2.4 (Cut admissibility). For all Γ, A+, A−, ∆, ∆′, and U that do not contain any
non-atomic suspended propositions:

1. If Γ; ∆ ` [A+] and Γ; ∆′, A+ ` U (where ∆ is stable), then Γ; ∆′,∆ ` U .
2. If Γ; ∆ ` A− and Γ; ∆′, [A−] ` U (where ∆, ∆′, and U are stable), then Γ; ∆′,∆ ` U .
3. If Γ; ∆ ` A+ and Γ; ∆′, A+ ` U , (where ∆′ and U are stable), then Γ; ∆′,∆ ` U .
4. If Γ; ∆ ` A− and Γ; ∆′, A− ` U , (where ∆ is stable), then Γ; ∆′,∆ ` U .
5. If Γ; · ` A− and Γ, A−; ∆′ ` U , then Γ; ∆′ ` U .

Parts 1 and 2 are where most of the action happens, but there is a sense in which the necessary
cut admissibility property is contained in structure of parts 3, 4, and 5 – these are the cases used
to prove the completeness of focusing (Theorem 2.6). The discrepancy between the stability
restrictions demanded for part 1 and part 2 is discussed below; this peculiarity is justified by the
fact that these two parts need only be general enough to prove parts 3, 4, and 5.

Proof. The proof is by induction: in each invocation of the induction hypothesis, either the
principal cut formula A+ or A− gets smaller or else it stays the same and the “part size” (1-5)
gets smaller. When the principal cut formula and the part size remain the same, either the first
given derivation gets smaller (part 3) or the second given derivation gets smaller (parts 1, 4 and
5).

This termination argument is a refinement of the standard structural termination argument for
cut admissibility in unfocused logics [Pfe00] – in part 3, we don’t need to know that the second
given derivation stays the same size, and in parts 1, 4, and 5 we don’t need to know that the first
given derivation stays the same size. This refined termination argument is the reason that we do
not require rely on weakening preserving the structure of proofs.

We schematically present one or two illustrative cases for each part of the proof.

Part 1 (positive principal cuts, right commutative cuts)

(∆1, ∆2 stable are stable by assumption)
D1

Γ; ∆1 ` [A+
1 ]

D2

Γ; ∆2 ` [A+
2 ]

Γ; ∆1,∆2 ` [A+
1 ⊗A

+
2 ]

⊗R

E ′
Γ; ∆′, A+

1 , A
+
2 ` U

Γ; ∆′, A+
1 ⊗A

+
2 ` U

⊗L

Γ; ∆′,∆1,∆2 ` U
cut(1 )

=⇒

D1

Γ; ∆1 ` [A+
1 ]

D2

Γ; ∆2 ` [A+
2 ]

E ′
Γ; ∆′, A+

1 , A
+
2 ` U

Γ; ∆′, A+
1 ,∆2 ` U

cut(1 )

Γ; ∆′,∆1,∆2 ` U
cut(1 )

(∆ is stable by assumption)

D
Γ; ∆ ` [A+]

E ′
Γ; ∆′, B+

1 , B
+
2 , A

+ ` U
Γ; ∆′, B+

1 ⊗B
+
2 , A

+ ` U
⊗L

Γ; ∆′, B+
1 ⊗B

+
2 ,∆ ` U

cut(1 ) =⇒

D
Γ; ∆ ` [A+]

E ′
Γ; ∆′, B+

1 , B
+
2 , A

+ ` U
Γ; ∆′, B+

1 , B
+
2 ,∆ ` U

cut(1 )

Γ; ∆′, B+
1 ⊗B

+
2 ,∆ ` U

⊗L
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Part 2 (negative principal cuts)

(∆, ∆′, ∆′A, and U are stable by assumption)

D′
Γ; ∆, A+

1 ` A
−
2

Γ; ∆ ` A+
1 ( A−2

(R

E1

Γ; ∆′A ` [A+
1 ]

E2

Γ; ∆′, [A−2 ] ` U
Γ; ∆′,∆′A, [A

+
1 ( A−2 ] ` U

(L

Γ; ∆′,∆′A,∆ ` U
cut(2 )

=⇒

E1

Γ; ∆′A ` [A+
1 ]

D′
Γ; ∆, A+

1 ` A
−
2

Γ; ∆′A,∆ ` A
−
2

cut(1 ) E2

Γ; ∆′, [A−2 ] ` U
Γ; ∆′,∆′A,∆ ` U

cut(2 )

Part 3 (left commutative cuts)

(∆′ and U are stable by assumption, ∆ is stable by the side condition on rule focusR)

D′
Γ; ∆ ` [A+]

Γ; ∆ ` A+
focusR E

Γ; ∆′, A+ ` U
Γ; ∆′,∆ ` U

cut(3 ) =⇒
D′

Γ; ∆ ` [A+]
E

Γ; ∆′, A+ ` U
Γ; ∆′,∆ ` U

cut(1 )

(∆′ and U are stable by assumption)

D′
Γ; ∆, B+

1 , B
+
2 ` A+

Γ; ∆, B+
1 ⊗B

+
2 ` A+

⊗L E
Γ; ∆′, A+ ` U

Γ; ∆′,∆, B+
1 ⊗B

+
2 ` A+

cut(3 ) =⇒

D′
Γ; ∆, B+

1 , B
+
2 ` A+

E
Γ; ∆′, A+ ` U

Γ; ∆′,∆, B+
1 , B

+
2 ` A+

cut(3 )

Γ; ∆′,∆, B+
1 ⊗B

+
2 ` A+

⊗L

Part 4 (right commutative cuts)

(∆ is stable by assumption, ∆′ and U are stable by the side condition on rule focusR)

D
Γ; ∆ ` A−

E ′
Γ; ∆′, [A−] ` U
Γ; ∆′, A− ` U

focusR

Γ; ∆′,∆ ` U
cut(4 ) =⇒

D
Γ; ∆ ` A−

E ′
Γ; ∆′, [A−] ` U

Γ; ∆′,∆ ` U
cut(2 )
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(Γ)◦ (∆)◦ (U)◦

(·)◦ = · (·)◦ = · (A−)◦ = (A−)◦

(Γ, A−)◦ = (Γ)◦, (A−)◦ (∆, A+)◦ = (∆)◦, (A+)◦ (A+)◦ = (A+)◦

(∆, A−)◦ = (∆)◦, (A−)◦ ([A+])◦ = (A+)◦

(∆, [A−])◦ = (∆)◦, (A−)◦ (〈p−〉)◦ = p−

(∆, 〈p+〉)◦ = (∆)◦, p+

Figure 2.8: Lifting erasure and polarization (Figure 2.3) to contexts and succeedents

Part 5 (persistent right commutative cuts)

D
Γ; · ` A−

E ′
Γ, A−; · ` B−

Γ, A−; · ` [!B−]
!R

Γ; · ` [!B−]
cut(5 ) =⇒

D
Γ; · ` A−

E ′
Γ, A−; · ` B−

Γ; · ` B−
cut(5 )

Γ; · ` [!B−]
!R

All the other cases follow the same pattern.

As noted above, there is a notable asymmetry between part 1 of the theorem, which does
not require stability of ∆′ and U in the second given derivation Γ; ∆′, A+ ` U , and part 2 of
the theorem, which does require stability of ∆ in the first given derivation Γ; ∆ ` A−. The
theorem would still hold for non-stable ∆, but we do not need the more general theorem, and
the less general theorem allows us to avoid duplicating the left commutative cuts between parts
2 and 3. On the other hand, we cannot make the theorem more specific, imposing extra stability
conditions on part 1, without fixing the order in which invertible rules are applied. Fixing the
order in which invertible rules are applied has some other advantages as well; this is a point we
will return to in Section 2.3.8.

2.3.7 Correctness of focusing

Now we will prove the correctness property for the focused, polarized logic that we discussed in
Section 2.3.1: that there is an unfocused derivation of (A+)◦ or (A−)◦ if and only if there is a
focused derivation of A+ or A−. The proof requires us to lift our erasure function to contexts and
succedents, which is done in Figure 2.8. Note that erasure is only defined on focused sequents
Γ; ∆ ` U when all suspended propositions are atomic. We are justified in making this restriction
because non-atomic suspended propositions cannot arise in the process of proving a proposition
A+ or A− in an empty context, and we are required to make this restriction due to the analogous
restrictions on cut admissibility (Theorem 2.4).

Theorems 2.5 and 2.6 therefore implicitly carry the same extra condition that we put on the
cut admissibility theorem: that ∆ and U must contain only atomic suspended propositions.

Theorem 2.5 (Soundness of focusing). If Γ; ∆ ` U , then Γ◦; ∆◦ −→ U◦.
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Proof. By straightforward induction on the given derivation; in each case, the result either fol-
lows directly by invoking the induction hypothesis (in the case of rules like ↑R) or by invoking
the induction hypothesis and applying one rule from Figure 2.1 (in the case of rules like⊗R).

Theorem 2.6 (Completeness of focusing). If Γ◦; ∆◦ −→ U◦, where ∆ and U are stable, then
Γ; ∆ ` U .

Proof. By induction on the first given derivation. Each rule in the unfocused system (Figure 2.1)
corresponds to one unfocused admissibility lemma, plus a some extra steps.

These extra steps arise are due to the generality of erasure. If we know that !A = (C+)◦

(as in the case for !R below), then by case analysis on the structure of C+, C+ must be either
!B− (for some B−) or ↓C−1 (for some C−1 ). In the latter case, by further case analysis on C−1
we can see that C−1 must equal ↑C+

2 (for some C+
2 ). But then C+

2 can be either !B−2 or ↓C−3 ; in
the latter case C+ = ↓↑↓C−3 , and this can go on arbitrarily long (but not forever, because C− is
a finite term). So we say that, by induction on the structure of C+, there exists an A− such that
C+ = ↓↑ . . . ↓↑!A− and A = (A−)◦. Depending on the case, we then repeatedly apply either the
↑↓R rule or the ↓↑L rule, both of which are derived below, to eliminate all the extra shifts. (Zero
or more instances of a rule are indicated by a double-ruled inference rule.)

Γ; ∆ ` A+

Γ; ∆ ` ↓↑A+
↓↑R =

Γ; ∆ ` A+

Γ; ∆ ` ↑A+
↑R

Γ; ∆ ` [↓↑A+]
↓R

Γ; ∆ ` ↓↑A+
focusR

Γ; ∆, A− ` U
Γ; ∆, ↑↓A− ` U

↑↓L =

Γ; ∆, A− ` U
Γ; ∆, ↓A− ` U

↓R

Γ; ∆, [↑↓A−] ` U
↑L

Γ; ∆, ↑↓A− ` U
focusL

We will describe a few cases to illustrate how unfocused admissibility lemmas work.
Rule copy: We are given Γ◦, A; ∆◦, A −→ U◦, which is used to derive Γ◦, A; ∆◦ −→ U◦. We

know A = (A−)◦. By the induction hypothesis, we have Γ, A−; ∆, A− ` U , and we conclude
with the unfocused admissibility lemma copyu:

Γ, A−; [A−] ` 〈A−〉 id−

Γ, A−; · ` 〈A−〉
copy

Γ, A−; · ` A− η−
Γ, A−; ∆, A− ` U

Γ, A−; ∆ ` U cut(5)

Rule !L: We are given Γ◦, A; ∆◦ −→ U◦, which is used to derive Γ◦; ∆◦, !A −→ U◦.
We know !A = (C−)◦; by induction on the structure of C− there exists A− such that C− =
↑↓ . . . ↓↑!A−. By the induction hypothesis, we have Γ, A−; ∆ ` U , and we conclude by the
unfocused admissibility lemma !uL, which is derivable:

Γ, A−; ∆ ` U
Γ; ∆, !A− ` U !L

Γ; ∆, [↑!A−] ` U
↑L

Γ; ∆, ↑!A− ` U
focusL

Γ; ∆, ↑↓ . . . ↓↑!A− ` U
↑↓L
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Rule !R: We are given Γ◦; · −→ A, which is used to derive Γ◦; · −→ !A. We know !A =
(C+)◦; by induction on the structure of C+ there exists A− such that C+ = ↓↑ . . . ↓↑!A−. By
the induction hypothesis, we have Γ; · ` ↓A−, and we conclude by the unfocused admissibility
lemma !uR:

Γ; · ` ↓A−

Γ; · ` ↑↓A−
↑R

Γ, ↑↓A−; [A−] ` 〈A−〉 id−

Γ, ↑↓A−;A− ` 〈A−〉
focusL

Γ, ↑↓A−; ↓A− ` 〈A−〉
↓L

Γ, ↑↓A−; [↑↓A−] ` 〈A−〉
↑L

Γ, ↑↓A−; · ` 〈A−〉
copy

Γ, ↑↓A−; · ` A− η−

Γ, ↑↓A−; · ` [!A−]
!R

Γ, ↑↓A−; · ` !A−
focusR

Γ; · ` !A−
cut(5)

Γ; · ` ↓↑ . . . ↓↑!A−
↓↑R

Rule (L: We are given Γ◦; ∆◦A −→ A and Γ◦; ∆◦, B −→ U◦, which are used to derive
Γ◦; ∆◦A,∆

◦, A( B −→ U . We know A ( B = (C−)◦; by induction on the structure of C−

there exist A+ and B− such that A = (A+)◦, B = (B−)◦, and C− = ↑↓ . . . ↑↓(A+ ( B−).
By the induction hypothesis, we have Γ; ∆A ` A+ and Γ; ∆, B− ` U , and we conclude by the
unfocused admissibility lemma(uL:

Γ; ∆A ` A+

Γ; 〈A+〉 ` [A+]
id+

Γ; [B−] ` 〈B−〉 id−

Γ; 〈A+〉, [A+ ( B−] ` 〈B−〉
(L

Γ; 〈A+〉, A+ ( B− ` 〈B−〉
focusL

Γ; 〈A+〉, A+ ( B− ` B− η−

Γ; 〈A+〉, A+ ( B− ` [↓B−]
↓R

Γ; 〈A+〉, A+ ( B− ` ↓B−
focusR

Γ;A+, A+ ( B− ` ↓B− η+

Γ; ∆A, A
+ ( B− ` ↓B− cut(3)

Γ; ∆, B− ` U
Γ; ∆, ↓B− ` U B−

Γ; ∆A,∆, A
+ ( B− ` U cut(3)

Γ; ∆A,∆, ↑↓ . . . ↑↓(A+ ( B−) ` U
↑↓L

Rule(R: We are given Γ◦; ∆◦, A −→ B, which is used to derive Γ◦; ∆◦ −→ A( B. We
know A ( B = (C+)◦; by induction on the structure of C+ there exist A+ and B− such that
A = (A+)◦, B = (B−)◦, and C+ = ↓↑ . . . ↑↓(A+ ( B−). By the induction hypothesis, we
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have Γ; ∆, ↑A+ ` ↓B+, and we conclude by the unfocused admissibility lemma(uR:

Γ; ∆, ↑A+ ` ↓B−

Γ; ∆, ↑A+ ` ↑↓B−
↑R

Γ; ∆, ↓↑A+ ` ↑↓B−
↓L

Γ; ∆ ` ↓↑A+ ( ↑↓B−
(R

Γ; 〈A+〉 ` [A+]
id+

Γ; 〈A+〉 ` A+
focusR

Γ; 〈A+〉 ` ↑A+
↑R

Γ; 〈A+〉 ` [↓↑A+]
↓R

Γ; [B−] ` 〈B−〉 id−

Γ;B− ` 〈B−〉
focusL

Γ; ↓B− ` 〈B−〉
↓L

Γ; [↑↓B−] ` 〈B−〉
↑L

Γ; [↓↑A+ ( ↑↓B−], 〈A+〉 ` 〈B−〉
(L

Γ; ↓↑A+ ( ↑↓B−, 〈A+〉 ` 〈B−〉
focusL

Γ; ↓↑A+ ( ↑↓B−, 〈A+〉 ` B− η−

Γ; ↓↑A+ ( ↑↓B−, A+ ` B− η+

Γ; ↓↑A+ ( ↑↓B− ` A+ ( B−
(R

Γ; ↓↑A+ ( ↑↓B− ` [↓(A+ ( B−)]
↓R

Γ; ↓↑A+ ( ↑↓B− ` ↓(A+ ( B−)
focusR

Γ; ∆ ` ↓(A+ ( B−)
cut(4)

Γ; ∆ ` ↓↑ . . . ↑↓(A+ ( B−)
↓↑R

All the other cases follow the same pattern.

2.3.8 Confluent versus fixed inversion
A salient feature of this presentation of focusing is that invertible, non-focused rules need not
be applied in any particular order. Therefore, the last step in a proof of Γ; ∆, A⊗B,1, !C `
D( E could be⊗L, 1L !L, or(R. The style is exemplified by Liang and Miller’s LJF [LM09],
and the confluent presentation in this chapter is closely faithful to Pfenning’s course notes on
linear logic [Pfe12c].

Allowing for this inessential nondeterminism simplifies the presentation a bit, but it also gets
in the way of effective proof search and canonical derivations if we do not address it in some
way. The different possibilities for addressing this nondeterminism within an inversion phase
echo the discussion of nondeterminism in LF from the beginning of the chapter. We can, as
suggested in that introduction, declare that all proofs which differ only by the order of their
invertible, non-focused rules be treated as equivalent. It is possible to establish that all possible
inversion orderings will lead to the same set of stable sequents, which lets us know that all of
these reorderings do not fundamentally change the structure of the rest of the proof. This property
already seems to be necessary to prove unfocused cut as expressed by this admissible rule:

Γ; ∆ ` A Γ; ∆′, A ` U
Γ; ∆′,∆ ` U cut

(where A is A+ or A− and ∆, ∆′, and U contain no focus but may not be stable). If A is
A+, proving the admissibility of this rule involves permuting invertible rules in the second given
derivation, Γ; ∆′, A+ ` U , until A+ is the only unstable part of the second sequent, at which
point part 3 of Theorem 2.4 applies. Similarly, if A is A−, we must permute invertible rules in
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the first given derivation until A− is the only unstable part of the first sequent, at which point part
4 of Theorem 2.4 applies.

By proving and using this more general cut property, it would be possible to prove a more
general completeness theorem: if Γ◦; ∆◦ −→ U◦, then Γ; ∆ ` U (Theorem 2.6 as stated also
requires that ∆ and U be stable). The cases of this new theorem corresponding to the unfocused
rules !R,(R, and ⊗L, which required the use of doubly-shifted side derivations in our presen-
tation, are trivial in this modified presentation. Unfortunately, the proof of unfocused cut, while
simple, is tedious and long. Gentzen’s original proof of cut admissibility [Gen35] and Pfenning’s
mechanization [Pfe00] all scale linearly with the number of connectives and rules in the logic;
the proofs of identity expansion, cut admissibility, soundness of focusing, and completeness of
focusing presented in this chapter do too. There is no known proof of the unfocused admissibly
of the rule cut above that scales linearly in this way: all known proofs grow quadratically with
the number of connectives and rules in the logic.

Once we equate all proofs that differ only on the order in which inference rules are applied
within an inversion phase, we can pick some member of each equivalence class to serve as a
canonical representative; this will suffice to solve the problems with proof search, as we can
search for the canonical representatives of focused proofs rather than searching within the larger
set of all focused proofs. The most common canonical representatives force invertible rules to
decompose propositions in a depth-first ordering.

Then, reminiscent of the move from LF to Canonical LF, the logic itself can be restricted so
that only the canonical representatives are admitted. The most convenient way of forcing a left-
most, depth-first ordering is to isolate the invertible propositions (A+ on the left and A− on the
right) in separate, ordered inversion contexts, and then to only work on the left-most proposition
in the context. This is the way most focused logics are defined, including those by Andreoli,
Chaudhuri, and myself in the next chapter. This style of presenting a focusing logic can be called
a fixed presentation, as the inversion phase is fixed in a particular, though fundamentally arbitrary,
shape.

The completeness of focusing for a fixed presentation of focusing is implied by the com-
pleteness of focusing for a confluent presentation of the same logic along with the appropriate
confluence property for that logic, whereas the reverse is not true. In this sense, the confluent
presentation allows us to prove a stronger theorem than the fixed presentation does, though the
fixed presentation will be sufficient for our purposes here and in later chapters. We will not prove
confluence in this chapter, though doing so is a straightforward exercise.

2.3.9 Running example

Figure 2.9 gives the result of taking our robot example, Figure 2.2, through the polarization
process and then running the result through Theorem 2.6. There is indeed only one proof of
this focused proposition up to the reordering of invertible rules, and only one proof period if we
always decompose invertible propositions in a left-most (i.e., depth-first) ordering as we do in
Figure 2.9.

We have therefore successfully used focusing to get a canonical proof structure that correctly
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Γ; 〈6bucks〉 ` [6bucks] id+

Γ; 〈battery〉 ` [battery] id+

Γ; 〈robot〉 ` [robot] id+

Γ; 〈robot〉 ` robot
focusR

Γ; robot ` robot
η+

Γ; [↑robot] ` robot
↑L

Γ; 〈battery〉, [battery( ↑robot] ` robot
(L

Γ; battery( ↑robot, 〈battery〉 ` robot
focusL

Γ; battery( ↑robot, battery ` robot
η+

Γ; battery( ↑robot, [↑battery] ` robot
↑L

Γ; 〈6bucks〉, battery( ↑robot, [6bucks( ↑battery] ` robot
(L

Γ; 〈6bucks〉, battery( ↑robot ` robot
copy

Γ; 〈6bucks〉, battery( ↑robot ` ↑robot
↑R

Γ; 〈6bucks〉, ↓(battery( ↑robot) ` ↑robot
↓L

Γ; 6bucks, ↓(battery( ↑robot) ` ↑robot
η+

Γ; 6bucks⊗ ↓(battery( ↑robot) ` ↑robot
⊗L

·; !(6bucks( ↑battery), 6bucks⊗ ↓(battery( ↑robot) ` ↑robot
!L

·; !(6bucks( ↑battery)⊗ 6bucks⊗ ↓(battery( ↑robot) ` ↑robot
⊗L

·; · ` !(6bucks( ↑battery)⊗ 6bucks⊗ ↓(battery( ↑robot)( ↑robot
(R

·; · ` [↓(!(6bucks( ↑battery)⊗ 6bucks⊗ ↓(battery( ↑robot)( ↑robot)]
↓R

·; · ` ↓(!(6bucks( ↑battery)⊗ 6bucks⊗ ↓(battery( ↑robot)( ↑robot)
focusR

Figure 2.9: Proving that a focused transition is possible (where we let Γ = 6bucks( ↑battery)

corresponds to our informal series of transitions:

$6 (1)

battery-less robot (1)

turn $6 into a battery
(all you want)

;

battery (1)

battery-less robot (1)

turn $6 into a battery
(all you want)

;

robot (1)

turn $6 into a battery
(all you want)

But at what cost? Figure 2.9 contains a fair amount of bureaucracy compared to the original
Figure 2.2, even if does a better job of matching, when read from bottom to top, the series of
transitions. A less cluttered way of looking at these proofs is in terms of what we, following
Chaudhuri, call synthetic inference rules [Cha08].

2.4 Synthetic inference rules
Synthetic inference rules were introduced by Andreoli as the derivation fragments associated
with bipoles. A monopole is the outermost negative (or positive) structure of a proposition, and
a bipole is a monopole surrounded by positive (or, respectively, negative) propositions [And01].
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In a polarized setting, bipoles capture the outermost structure of a proposition up to the second
occurrence of a shift or an exponential.

The first idea behind synthetic inference rules is that the most important sequents in a po-
larized sequent calculus are stable sequents where all suspended propositions are atomic. This
was reflected by our proof of the completeness of focusing (Theorem 2.6), which was restricted
to stable sequents.7 The second idea is that the bottommost rule in the proof of a stable sequent
must be one of the following:

∗ copy on some proposition A− from Γ,

∗ focusL on some proposition A− in ∆, or

∗ focusR on the succedent A+

Once we know which proposition we have focused on, the bipole structure of that proposition
(that is, the outermost structure of the proposition up through the second occurrence of a shift of
exponential) completely (though not uniquely) dictates the structure of the proof up to the next
occurrences of stable sequents.

For example, consider the act of focusing on the proposition a+ ( ↑b+ in Γ using the copy
rule, where a+ and b+ are positive atomic propositions. This must mean that a suspended atomic
proposition a+ appears suspended in the context ∆, or else the proof could not be completed:

Γ, a+ ( ↑b+; 〈a+〉 ` [a+]
id+

Γ, a+ ( ↑b+; ∆, 〈b+〉 ` U
Γ, a+ ( ↑b+; ∆, b+ ` U η+

Γ, a+ ( ↑b+; ∆, [↑b+] ` U
↑L

Γ, a+ ( ↑b+; ∆, 〈a+〉, [a+ ( ↑b+] ` U
(L

Γ, a+ ( ↑b+; ∆, 〈a+〉 ` U
copy

The non-stable sequents in the middle are not interesting parts of the structure of the proof, as
they are fully determined by the choice of focus, so we can collapse this series of transitions into
a single synthetic rule:

Γ, a+ ( ↑b+; ∆, 〈b+〉 ` U
Γ, a+ ( ↑b+; ∆, 〈a+〉 ` U CP

For the MELL fragment of linear logic, we can associate exactly one rule with every positive
proposition (corresponding to a right-focus on that proposition) and two rules with every negative
proposition (corresponding to left focus on a negative proposition in the persistent context and
left focus on that negative proposition in the positive context). Here are three examples:

Γ; ∆, 〈b+〉 ` U
Γ; ∆, 〈a+〉, a+ ( ↑b+ ` U LF

Γ, A−; ∆, 〈b+〉, C− ` D+

Γ; ∆ ` ↓(!A− ⊗ b+ ⊗ ↓C−( ↑D+)
RF

Γ; 〈a+〉 ` a+ RF′

7If we had established the unfocused cut rule discussed in Section 2.3.8 and had then proven the completeness
of focusing (Theorem 2.6) for arbitrary inverting sequents, it would have enabled an interpretation that puts all
unfocused sequents on similar footing, but that is not our goal here.
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6bucks( ↑battery ; 〈robot〉 ` robot
RF′

6bucks( ↑battery ; battery( ↑robot, 〈battery〉 ` robot
LF

6bucks( ↑battery ; 〈6bucks〉, battery( ↑robot ` robot
CP

·; · ` ↓(!(6bucks( ↑battery)⊗ 6bucks⊗ ↓(battery( ↑robot)( ↑robot)
RF

Figure 2.10: Our running example, presented with synthetic rules

This doesn’t mean that there are no choices to be made within focused phases, just that, in MELL,
those choices are limited to the way the resources – propositions in ∆ – are distributed among
the branches of the proof. If we also consider additive connectives, we can identify some number
of synthetic rules for each right focus, left focus, or copy. This may be zero, as there’s no way to
successfully right focus on a proposition like 0 ⊗ ↓↑A+, and therefore zero synthetic inference
rules are associated with this proposition. It may be more than one: there are three ways to
successfully right focus on the proposition a+ ⊕ b+ ⊕ c+, and so three synthetic inference rules
are associated with this proposition:

Γ; 〈a+〉 ` a+ ⊕ b+ ⊕ c+ Γ; 〈b+〉 ` a+ ⊕ b+ ⊕ c+ Γ; 〈c+〉 ` a+ ⊕ b+ ⊕ c+

Focused proofs of stable sequents are, by definition, in a 1-to-1 correspondence with proofs
using synthetic inference rules. If we look at our running example as a derivation using the
example synthetic inference rules presented above (as demonstrated in Figure 2.10), we see that
the system takes four steps. The middle two steps, furthermore, correspond precisely to the two
steps in our informal description of the robot-battery-store system.

2.5 Hacking the focusing system

Despite the novel treatment of suspended propositions in Section 2.3, the presentation of linear
logic given there is equivalent to the presentation in Chaudhuri’s dissertation [Cha06], in the
sense that the logic gives rise to the same synthetic inference rules. It is not a faithful intuitionistic
analogue to Andreoli’s original presentation of focusing [And92], though the presentation in
Pfenning’s course notes is [Pfe12c].8 Nor does it have the same synthetic inference rules as the
focused presentation used in the framework of ordered logical specifications that we presented
in [PS09].

In this section, we will discuss four different presentations of focused sequent calculi that are
closely connected to the logic we have just presented. Each system differs significantly in its
treatment of positive atomic propositions, the exponential !A, and the interaction between them.
∗ Andreoli’s original system, which I name the atom optimization, complicates the interpre-

tation of atomic propositions as stand-ins for arbitrary propositions.

8We will blur the lines, in this section, between Andreoli’s original presentation of focused classical linear logic
and Pfenning’s adaptation to intuitionistic linear logic. In particular, we will mostly use the notation of Pfenning’s
presentation, but the observations are equally applicable in Andreoli’s focused triadic system.
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∗ A further change to the atom optimization, the exponential optimization, complicates the
relationship between the focused logic and the unfocused logic.

∗ The adjoint logic of Benton and Wadler [BW96] introduces a new syntactic class of persis-
tent propositions, restricting linear propositions to the linear context and persistent propo-
sitions to the persistent context.

∗ The introduction of permeable atomic propositions, a notion (which dates at least back
to Girard’s LU [Gir93]) that some propositions can be treated as permeable between the
persistent and linear contexts and that permeable atomic propositions can be introduced to
stand for this class of permeable propositions.

The reason we survey these different systems is that they all provide a solution to a pervasive
problem encountered when using focused sequent calculi as logical frameworks: the need to
allow for synthetic inference rules of the form

Γ, p; ∆, r ` C
Γ, p; ∆, q ` C

where p is an atomic proposition in the persistent context that is observed (but not consumed), q
is an atomic proposition that is consumed in the transition, and r is an atomic proposition that is
generated as the result of the transition. In the kinds of specifications we will be dealing with, the
ability to form these synthetic inference rules is critical. In some uses, the persistent resource acts
as permission to consume q and produce r. In other uses, p represents knowledge that we must
currently possess in order to enact a transition. As a concrete example, America’s 2010 health
care reform law introduced a requirement that restaurant menus include calorie information. This
means that, in the near future, we can exchange six bucks for a soup and salad at Panera, but only
if we know how many calories are in the meal. The six bucks, soup, and salad remain ephemeral
resources like q and r, but the calorie count is persistent. A calorie count is scientific knowledge,
which is a resource that is not consumed by the transition.

My justification for presenting Chaudhuri’s system as the canonical focusing system for lin-
ear logic in Section 2.3 is because it most easily facilitates reasoning about the focused sequent
calculus as a logic. Internal soundness and completeness properties are established by the cut
admissibility and identity expansion theorems (Theorems 2.4 and 2.3), and these theorems are
conceptually prior to the soundness and completeness of the focused system relative to the un-
focused system (Theorems 2.5 and 2.6). The various modifications we discuss in this section
complicate the treatment of focused logics as independently justifiable sequent calculi for lin-
ear logic. I suggest in Section 2.5.4 that the last option, the incorporation of permeable atomic
propositions, is the most pleasing mechanism for incorporating the structure we desire into a
focused presentation of linear logic.

All of the options discussed in this section are compatible with a fifth option, discussed in
Section 4.7.1, of avoiding positive propositions altogether and instead changing our view of
stable sequents. The proposition ↓a− ( ↓b− ( c− is associated with this synthetic inference
rule:

Γ; ∆ ` 〈a−〉 Γ; ∆′ ` 〈b−〉
Γ; ∆,∆′, ↓a−( ↓b−( c− ` 〈c−〉
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If we can prove a general theorem that the sequent Γ; ∆ ` 〈a−〉 can only be proven if ∆ = a− or
if ∆ = · and a− ∈ Γ, then a− is a pseudo-positive atomic proposition. Proving the succedent 〈a−〉
where a− is pseudo-positive is functionally very similar to proving [a+] in focus for a positive
atomic proposition. This gives us license to treat stable sequents that prove a pseudo-positive
proposition not as a stable sequent that appears in synthetic inference rules but as an immediate
subgoal that gets folded into the synthetic inference rule. If a− is pseudo-positive, the persistent
proposition ↓a−( ↓b−( c− can be associated with these two synthetic inference rules:

Γ; ∆ ` 〈b−〉
Γ; ∆, ↓a−( ↓b−( c−, a− ` 〈c−〉

Γ, a−; ∆ ` 〈b−〉
Γ, a−; ∆, ↓a−( ↓b−( c− ` 〈c−〉

The machinery of lax logic introduced in Chapter 3 and the fragment of this logic that forms a
logical framework in Chapter 4 make it feasible, in practice, to observe when negative atomic
propositions are pseudo-positive.

2.5.1 Atom optimization

Andreoli’s original focused system isn’t polarized, so propositions that are syntactically invalid
in a polarized presentation, like !(p+ ⊗ q+) or !p+, are valid in his system (we would have to
write !↑(p+ ⊗ q+) and !↑p+). It’s therefore possible, in an unpolarized presentation, to use the
copy rule to copy a positive proposition out of the context and into left focus, but the focus
immediately blurs, as in this (intuitionistic) proof fragment:9

...
p+ ⊗ q+; p+, q+  q+ ⊗ p+

p+ ⊗ q+; p+ ⊗ q+  q+ ⊗ p+
⊗L

p+ ⊗ q+; [p+ ⊗ q+]  q+ ⊗ p+ blurL

p+ ⊗ q+; ·  q+ ⊗ p+
copy

Note that, in the polarized setting, the effect of the blurL rule is accomplished by the ↓L rule.
Andreoli’s system makes a single restriction to the copy rule: it cannot apply to a positive

atomic proposition in the persistent context. On its own, this restriction would make the system
incomplete with respect to unfocused linear logic – there would be no focused proof of !p+ ( p+

– and so Andreoli-style focusing systems restore completeness by creating a second initial se-
quent for positive atomic propositions that allows a positive right focus on an atomic proposition
to succeed if the atomic proposition appears in the persistent context:

Γ; p+  [p+]
id+

1 Γ, p+; ·  [p+]
id+

2

With the second initial rule, we can once again prove !p+ ( p+, and the system becomes

9We will use the sequent form Γ; ∆  C in this section for focused but unpolarized systems. Again, we
frequently reference Pfenning’s presentation of focused linear logic [Pfe12c] as a faithful intuitionistic analogue of
Andreoli’s system.
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complete with respect to unfocused linear logic again.

p+; ·  [p+]
id+

2

p+; ·  p+
focusR

·; !p+  p+ !L

·; ·  !p+ ( p+
(R

This modified treatment of positive atoms will be called the atom optimization, as it reduces the
number of focusing steps that need to be applied: it takes only one right focus to prove !p+ ( p+

in Andreoli’s system, but it would take two focusing steps to prove the same proposition in
Chaudhuri’s system (or to prove !↑p+ ( ↑p+ in the focusing system we have presented).

There seem to be three ways of adapting the atom optimization to a polarized setting. The
first option would be to add an initial sequent that directly mimics the one in Andreoli’s system,
while adding an additional requirement to the copy rule that A− is not a shifted positive atomic
proposition:

Γ; 〈A+〉 ` [A+]
id+

Γ, ↑p+; · ` [p+]
id+

2

A 6= ↑p+ Γ, A−; ∆, [A−] ` U
Γ, A−; ∆ ` U

copy∗

The second approach is to extend suspended propositions to the persistent context, add a corre-
sponding rule for right focus, and modify the left rule for ! to notice the presence of a positive
atomic proposition:

A− 6= ↑p+ Γ, A−; ∆ ` U
Γ; ∆, !A− ` U !L1

Γ, 〈p+〉; ∆ ` U
Γ; ∆, !↑p+ ` U !L2

Γ; 〈A+〉 ` [A+]
id+

1 Γ, 〈A+〉; · ` [A+]
id+

2

The third approach is to introduce a new connective, !+, that can only be applied to positive
atomic propositions, just as ! can only be applied to negative propositions. We can initially view
this option as equivalent to the previous one by defining !+p+ as a notational abbreviation for !↑p+

and styling rules according to the second approach above:

Γ; · ` p+

Γ; · ` [ !+p+]
!+R

Γ, 〈p+〉; ∆ ` U
Γ; ∆, !+p+ ` U !+L Γ; 〈A+〉 ` [A+]

id+
1 Γ, 〈A+〉; · ` [A+]

id+
2

All three of these options are similar; we will go with the last, as it allows us to preserve the
original meaning of !↑p+ if that is our actual intent. Introducing the atom optimization as a new
connective also allows us to isolate the effects that this new connective has on cut admissibility,
identity expansion, and the correctness of focusing; we will consider each in turn.
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〈p+〉; · ` [p+]
id+

2 〈p+〉; · ` [p+]
id+

2

〈p+〉; · ` [p+ ⊗ p+]
⊗R

〈p+〉; · ` p+ ⊗ p+
focusR

·; !+p+ ` p+ ⊗ p+ !+L vs.

↑A+; 〈A+〉 ` [A+]
id+

1 ↑A+; 〈A+〉 ` [A+]
id+

1

↑A+; 〈A+〉, 〈A+〉 ` [A+ ⊗ A+]
⊗R

↑A+; 〈A+〉, 〈A+〉 ` A+ ⊗ A+
focusR

↑A+; 〈A+〉, A+ ` A+ ⊗ A+ η+

↑A+; 〈A+〉, [↑A+] ` A+ ⊗ A+
↑L

↑A+; 〈A+〉 ` A+ ⊗ A+
copy

↑A+;A+ ` A+ ⊗ A+ η+

↑A+; [↑A+] ` A+ ⊗ A+
↑L

↑A+; · ` A+ ⊗ A+
copy

·; !↑A+ ` A+ ⊗ A+ !L

Figure 2.11: Substituting A+ for p+ in the presence of the atom optimization

Identity expansion There is one new case of identity expansion, which is unproblematic:

D
Γ; ∆, 〈 !+p+〉 ` U
Γ; ∆, !+p+ ` U η+

=⇒

Γ, 〈p+〉; · ` [p+]
id+

2

Γ, 〈p+〉; · ` p+
focusR

Γ, 〈p+〉; · ` [ !+p+]
!+R

D
Γ; ∆, 〈 !+p+〉 ` U

Γ, 〈p+〉; ∆, 〈 !+p+〉 ` U weaken

Γ, 〈p+〉; ∆ ` U subst+

Γ; ∆, !+p+ ` U !+L

Even though the identity expansion theorem is unproblematic, we can illuminate one problem
with the atom optimization by considering the substitution of arbitrary propositions for atomic
propositions. Previously, when we substituted a positive proposition for an atomic proposition,
the proof’s structure remained fundamentally unchanged – instances of the η+ rule on p+ turned
into admissible instances of the general identity expansion rule η+ on A+. Now, we have to
explain what it even means to substitute A+ for p+ in !+p+, since !+A+ is not a syntactically valid
proposition; the only obvious candidate seems to be !↑A+. That substitution may require us to
change the structure of proofs in a significant way, as shown in Figure 2.11. Immediately before
entering into any focusing phase where the id+

2 rule is used n times on the hypothesis 〈p+〉, we
need to left-focus on ↑A+ n times with the copy rule to get n copies of 〈A+〉 into the linear
context, each of which can be used to replace one of the id+

2 instances with an instance of id+
1 .

Cut admissibility While we might be willing to sacrifice the straightforward interpretation of
atomic propositions as stand-ins for arbitrary propositions, another instance of the same prob-
lematic pattern arises when we try to establish the critical cut admissibility theorem for the logic
with !+p+. Most of the new cases are unproblematic, but trouble arises in part 1 when we cut a
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Γ; · ` [q+]
id+

2

Γ; 〈p+〉 ` [p+]
id+

1

Γ; 〈p+〉 ` p+
focusR

Γ; p+ ` p+ η+

Γ; [↑p+] ` p+
↑L

Γ; q+ ( ↑p+ ` p+
(L

Γ; · ` p+
copy

Γ, 〈p+〉; · ` [p+]
id+

2 Γ, 〈p+〉; · ` [p+]
id+

2

Γ, 〈p+〉; · ` [p+ ⊗ p+]
⊗R

Γ, 〈p+〉; · ` p+ ⊗ p+
focusR

Γ; · ` p+ ⊗ p+ cut(6b)

=⇒

...
Γ; · ` p+

...
Γ; · ` p+

Γ; 〈p+〉 ` [p+]
id+

1 Γ; 〈p+〉 ` [p+]
id+

1

Γ; 〈p+〉, 〈p+〉 ` [p+ ⊗ p+]
⊗R

Γ; 〈p+〉, 〈p+〉 ` p+ ⊗ p+
focusR

Γ; 〈p+〉, p+ ` p+ ⊗ p+ η+

Γ; 〈p+〉 ` p+ ⊗ p+ cut(3)

Γ; p+ ` p+ ⊗ p+ η+

Γ; · ` p+ ⊗ p+ cut(3)

(where Γ = q+ ( ↑p+, 〈q+〉)

Figure 2.12: A problematic cut that arises from the introduction of the !+p+ connective

right-focused proof of !+p+ against a proof that is decomposing !+p+ on the left:

Γ; · ` p+

Γ; · ` [ !+p+]
!+R

Γ, 〈p+〉; ∆ ` U
Γ; ∆, !+p+ ` U !+L

Γ; ∆ ` U cut(1)

We are left needing to prove that Γ; · ` p+ and Γ, 〈p+〉; ∆ ` U proves Γ; ∆ ` U , which does
not fit the structure of any of our existing cut principles. It is similar to the statement of part
5 of Theorem 2.4 (if Γ; · ` A− and Γ, A−; ∆ ` U , then Γ; ∆ ` U ), but the proof is not so
straightforward.

To see why this cut is more complicated to prove than part 5 of Theorem 2.4, consider what it
will take to reduce the cut in the top half of Figure 2.12. We cannot immediately call the induction
hypothesis on the sub-derivation in the right branch, as there is no way to prove p+⊗ p+ in focus
when 〈p+〉 does not appear (twice) in the linear context. We need to get two suspended 〈p+〉
antecedents in the linear context; then we can replace all the instances of id+

2 with instances of
id+

1 that use freshly-minted 〈p+〉 antecedents. This can be achieved with repeated application of
part 3 of Theorem 2.4, as shown in the bottom half of Figure 2.12.

The minimal extension to cut admissibility (Theorem 2.4) that justifies the atom optimization
appears to be the following, where 〈p+〉n denotes n copies of the suspended positive proposition
〈p+〉.
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Theorem 2.7 (Extra cases of cut admissibility (Theorem 2.4)).
6a. If Γ; · ` p+ and Γ, 〈p+〉; ∆ ` [B+], then there exists n such that Γ; ∆, 〈p+〉n ` [B+].
6b. If Γ; · ` p+ and Γ, 〈p+〉; ∆ ` U , then Γ; ∆ ` U .
6c. If Γ; · ` p+ and Γ, 〈p+〉; ∆, [B−] ` U , then there exists n such that Γ; ∆, 〈p+〉n, [B−] ` U .

Proof. Induction on the second given derivation; whenever focusR, focusL or copy are the last
rule in part 6b, we need to make n calls to part 3 of the cut admissibility lemma, each one followed
by a use of the η+ rule, where n is determined by the inductive call to part 6a (for focusR) or 6c
(for focusL and copy).

The calls to part 3 are justified by the existing induction metric: the principal cut formula p+

stays the same and the part number gets smaller.

Correctness of focusing The obvious way of extending erasure for our extended logic is to let
( !+p+)◦ = !p+ and to let (Γ, 〈p+〉)◦ = (Γ)◦, p+. Under this interpretation, the soundness of !+L
and !+R has the same structure as the soundness of !L and !R, and the soundness of id+

2 in the
focused system is established with copy and id in the unfocused system:

Γ◦, p+; p+ −→ p+ id

Γ◦, p+; · −→ p+
copy

The extension to the proof of completeness requires two additional cases to deal with !+, both
of which are derivable. . .

Γ; · ` p+

Γ; · ` ↓↑ . . . ↓↑ !+p+ !+uR
Γ, 〈p+〉; ∆ ` U

Γ; ∆, ↑↓ . . . ↓↑ !+p+ ` U !+uL

. . . as well as a case dealing with the situation where we apply copy to the erasure of a persistent
suspended proposition. This case reduces to a case of ordinary focal substitution:

Γ, 〈p+〉; ∆, 〈p+〉 ` U
Γ, 〈p+〉; ∆ ` U 〈copy〉u = Γ, 〈p+〉; · ` [p+]

id+
2 Γ, 〈p+〉; ∆, 〈p+〉 ` U

Γ, 〈p+〉; ∆ ` U subst+

For such a seemingly simple change, the atom optimization adds a surprising amount of
complexity to the cut admissibility theorem for focused linear logic. What’s more, the three extra
cases of cut that we had to introduce were all for the purpose of handling a single problematic
case in the proof of part 1 where both derivations were decomposing the principal cut formula
!+p+.

2.5.2 Exponential optimization
The choice of adding !+p+ as a special new connective instead of defining it as !↑p+ paves the
way for us to modify its meaning further. For instance, there turns out to be no internal reason for
the !+R rule to lose focus in its premise, even though it is critical that !R lose focus on its premise;
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if we fail to do so propositions like !(p+ ⊗ q+)( !(q+ ⊗ p+) will have no proof. We can revise
!+R accordingly.

Γ; · ` [p+]

Γ; · ` [ !+p+]
!+R

Γ, 〈p+〉; ∆ ` U
Γ; ∆, !+p+ ` U !+L Γ; 〈A+〉 ` [A+]

id+
1 Γ, 〈A+〉; · ` [A+]

id+
2

This further optimization can be called the exponential optimization, as it, like the atom opti-
mization, potentially reduces the number of focusing phases in a proof. Identity expansion is
trivial to modify, and cut admissibility is significantly simpler.

The problematic case of cut is easy to handle in this modified system: we can conclude by
case analysis that the first given derivation must prove p+ in focus using the id+

2 rule. This,
in turn, means that 〈p+〉 must already appear in Γ, so Γ = Γ′, 〈p+〉, and the cut reduces to an
admissible instance of contraction.

Γ′, 〈p+〉; · ` [p+]
id+

2

Γ′, 〈p+〉; · ` [ !+p+]
!+R

Γ′, 〈p+〉, 〈p+〉; ∆ ` U
Γ′, 〈p+〉; ∆, !+p+ ` U !+L

Γ′, 〈p+〉; ∆ ` U cut(1) =⇒ Γ′, 〈p+〉, 〈p+〉; ∆ ` U
Γ′, 〈p+〉; ∆ ` U contract

Thus, we no longer need the complicated extra parts 6a - 6c of cut admissibility in order to prove
cut admissibility for a focused system with the exponential optimization.

Because cut and identity hold, we can think of a focused logic with the exponential optimiza-
tion as being internally sensible. The problem is that this logic is no longer externally sensible
relative to normal linear logic, because we cannot erase !+p+ into regular linear logic in a sensible
way. Specifically, if we continue to define ( !+p+)◦ as !p+, then !+q+ ( !(q+ ( ↑p+) ( ↑ !+p+

has no proof in focused linear logic, whereas its erasure, !q+ ( !(q+ ( p+)( !p+, does have
an unfocused proof. In other words, the completeness of focusing (Theorem 2.6) no longer holds
under the exponential optimization!

Our focused logic with the exponential optimization has some resemblance to tensor logic
[MT10], as well the polarized logic that Girard presented in a note, “On the sex of angels,”
which first introduced the ↑A+ and ↓A− notation to the discussion of polarity [Gir91]. Both of
these presentations incorporate a general focus-preserving !+A+ connective – a positive formula
with a positive subformula – in lieu of the focus-interrupting !A− connective. Both presentations
also have the prominent caveat that ! in the unfocused logic necessarily corresponds to !+↓ in the
focused logic: it is not possible to derive !+(A⊗B) ` !+(B⊗A) in these systems, and no apology
is made for this fact, because !+↓↑(A ⊗ B) ` !+↓↑(B ⊗ A) holds as expected. We want avoid
this route because it gives the shifts too much power: they influence the existence of proofs, not
just the structure of proofs.10 This interpretation of shifts therefore threatens our critical ability
to intuitively understand and explain linear logic connectives as resources.

There is an easily identifiable class of sequents that obey separation, which is the property
that positive atomic propositions can be separated into two classes p+

l and p+
p . The linear positive

10Both the note of Girard and the paper of Melliès and Tabareau see the shifts as a form of negation; therefore,
writing from an intuitionistic perspective, they are unconcerned that A+ has a different meaning of ↓↑A+ in their
constructive logic. There are many propositions where ¬¬A is provable even though A is not! This view of shifts
as negations seems rather foreign to the erasure-based understanding of shifts we have been discussing, though
Zeilberger has attempted to reconcile these viewpoints [Zei08b].
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propositions p+
l are never suspended in the persistent context and never appear as !+p+

l , whereas
the persistent positive propositions p+

p are never suspended in the linear context and always
appear as !+p+

p inside of other propositions. For sequents and formulas obeying separation, we
can use the obvious erasure operation and obtain a proof of the completeness of focusing; this
notion of separation was the basis of our completeness result in [PS09]. However, separation
is a meta-logical property, something that we observe about a fragment of the logic and not an
inherent property of the logic itself. There are many propositions A+ and A− that we cannot
prove in focused linear logic with the exponential optimization even though (A+)◦ and (A−)◦

are provable in linear logic, and that makes the exponential optimization unsatisfactory.
The remaining two approaches, adjoint logic and the introduction of permeable atomic propo-

sitions, can both be seen as attempts to turn separation into a logical property instead of a meta-
logical property.

2.5.3 Adjoint logic
We introduced !+p+ as a connective defined as !↓p+ – that is, the regular !A− connective plus
a little something extra, the shift. After our experience with modifying the rules of !+, we can
motivate adjoint logic by trying to view !+ as a more primitive connective – that is, we will try to
view ! as !+ plus a little something extra.

It is frequently observed that the exponential !A of linear logic appears to have two or more
parts; the general idea is that !+ represents just one of those pieces. Accounts of linear logic
that follow the judgmental methodology of Martin-Löf [ML96], such as the analysis by Chang
et al. [CCP03], emphasize that the regular hypothetical sequent Γ; ∆ −→ A of linear logic is
establishing the judgment that A is true: we can write Γ; ∆ −→ A true to emphasize this. The
judgment of validity, represented by the judgmentA valid , is defined as truth using no ephemeral
resources, and !A is understood as the internalization of judgmental validity:

Γ; · −→ A true

Γ −→ A valid
valid

∆ = · Γ −→ A valid

Γ; ∆ −→ !A true
!′R

The valid rule is invertible, so if we ever need to prove Γ −→ A valid , we may asynchronously
transition to proving Γ; · −→ A true. This observation is used to explain why we don’t normally
consider validity on the right in linear logic. Our more familiar rule for !R is derivable using
these two rules:

∆ = ·
Γ; · ` A true

Γ ` A valid
valid

Γ; ∆ ` !A true
!′R

Note that the !′R rule is not invertible, because it forces the linear context to be empty, which
means ! must be positive. The valid rule, on the other hand, is invertible and has an asynchronous
or negative character, because it represents the invertible step of deciding to prove that A is valid
(true without recourse to any ephemeral resources) by proving that it is true (in a context with
no ephemeral resources). This combination of positive and negative actions explains why !A−

is a positive proposition with a negative subformula, and similarly explains why we must break
focus when we reach !A on the right and why we must stop decomposing the proposition when
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Γ; · −→ A

Γ −→ GA
GR

Γ, GA; ∆, A −→ C

Γ, GA; ∆ −→ C
GL Γ, x −→ x

initx

Γ, X −→ Y

Γ −→ X ⊃ Y
⊃R

Γ, X ⊃ Y −→ X Γ, X ⊃ Y, Y −→ Z

Γ, X ⊃ Y −→ Z
⊃L

Γ, X ⊃ Y −→ X Γ, X ⊃ Y, Y ; ∆ −→ C

Γ, X ⊃ Y ; ∆ −→ C
⊃′L

Γ −→ X

Γ; · −→ FX
FR

Γ, X; ∆ −→ C

Γ; ∆, FX −→ C
FL Γ; a −→ a

inita

Γ; ∆, A −→ B

Γ; ∆ −→ A( B
(R

Γ; ∆A −→ A Γ; ∆, B −→ C

Γ; ∆A,∆, A( B −→ C
(L

Figure 2.13: Some relevant sequent calculus rules for adjoint logic

we reach !A on the left. The salient feature of the exponential optimization’s rules for !+p+, of
course, is that they do not break focus on the right and that they continue to decompose the
proposition on the left (into a suspended proposition 〈p+〉 in the persistent context). This is the
reason for arguing that !+ captures only the first, purely positive, component of the ! connective.

If the !+ connective is the first part of the ! connective, can we characterize the rest of the
connective? Giving a reasonable answer necessarily requires a more general account of the !+

connective – a unfocused logic where it is generally applicable rather than restricted to positive
atomic propositions. In other words, to account for the behavior of !+, we must give a more
primitive logic into which linear logic can be faithfully encoded.

A candidate for a more primitive logic, and one that has tacitly formed the basis of much
of my previous work on logic programming and logical specification in substructural logic
[PS09, SP11b, SP11a], is adjoint logic. Adjoint logic was first characterized by Benton and
Wadler as a natural deduction system [BW96] and was substantially generalized by Reed in a
sequent calculus setting [Ree09b]. The logic generalizes both linear logic and Fairtlough and
Mendler’s lax logic [FM95] as sub-languages of a common logic, whose propositions come in
two syntactically distinct categories that are connected by the adjoint operators F and G:

Persistent propositions X, Y, Z ::= GA | x | X ⊃ Y | X × Y
Linear propositions A,B,C ::= FX | a | A( B | A⊗B

In adjoint logic, persistent propositionsX appear in the persistent context Γ and as the succedents
of sequents Γ −→ X , whereas linear propositions A appear in the linear context ∆ and as the
succedents of sequents Γ; ∆ −→ A. Going back to our previous discussion, this means that
persistent propositions are only ever judged to be valid, and that linear propositions are only
ever judged to be true. A fragment of the logic is shown in Figure 2.13. Note the similarity
between the GL rule and our unfocused copy rule, as well as the similarity between FR and GR

48



October 15, 2012
DRAFT

in Figure 2.13 and the rules !R and valid in the previous discussion. Linear logic is recovered
as a fragment of adjoint logic by removing all of the persistent propositions except for GA; the
usual !A is then definable as FGA.11

One drawback of this approach is simply the logistics of giving a fully focused presentation
of adjoint logic. We end up with a proliferation of propositions, because the syntactic distinction
between X and A is orthogonal to the syntactic distinction between positive and negative propo-
sitions. A polarized presentation of adjoint logic would have four syntactic categories: X+, X−,
A+, and A−, with one pair of shifts mediating between X+ and X− and another pair of shifts
mediating between A+ and A−.12 Given a focused presentation of adjoint logic, however, the
separation criteria discussed above can be in terms of the two forms of positive atomic proposi-
tion a and x. Positive atomic propositions that are always associated with !+ can be encoded as
persistent positive atomic propositions x+, whereas positive atomic propositions that are never
associated with !+ can be encoded as linear positive atomic propositions a+. The proposition !+p+

can then be translated as Fx+, where x+ is the translation of p+ as a persistent positive atomic
proposition.

Adjoint logic gives one answer to why, in Andreoli-style presentations of linear logic, we
can’t easily substitute positive propositions for positive atomic propositions when those positive
atomic propositions appear suspended in the persistent linear context: because these propositions
are actually stand-ins for persistent propositions, not for linear propositions, and we are working
in a fragment of the logic that has no interesting persistent propositions other than atomic propo-
sitions x and the negative inclusion GA back into linear propositions. This effectively captures
the structure of the separation requirement (as defined at the end of Section 2.5.2 above) in a
logical way, but it makes the structure of persistent atomic propositions rather barren and degen-
erate, and it places an extra logic, adjoint logic, between the focused system and our original
presentation of intuitionistic linear logic.

2.5.4 Permeability

Let us review the problems with our previous attempts to motivate a satisfactory treatment of
positive propositions in the persistent context. Andreoli’s atom optimization interferes with the
structure of cut admissibility. The exponential optimization lacks a good interpretation in unfo-
cused linear logic. The adjoint formulation of linear logic introduces persistent positive proposi-
tions as members of a syntactic class X of persistent propositions, a syntactic class that usually
lies hidden in between the two right-synchronous and right-asynchronous (that is, positive and
negative) halves of the ! connective. This approach works but requires a lot of extra machinery.

Our final attempt to logically motivate a notion of a persistent positive proposition will be
based on an analysis of permeability. Permeability in classical presentations of linear logic dates
back to Girard’s LU [Gir93]. In this section, we will motivate permeable atomic propositions in

11Lax logic, on the other hand, is recovered by removing all of the linear propositions except for FX; the distin-
guishing connective of lax logic, #X , is then definable as GFX .

12To make matters worse, in Levy’s Call-By-Push-Value language, the programming language formalism that
corresponds to polarized logic, ↑ and ↓ are characterized as adjoints as well (F and U , respectively), so a fully
polarized adjoint logic has three distinct pairs of unary connectives that can be characterized as adjoints!
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intuitionistic linear logic by first considering a new identity expansion principle that only applies
to permeable propositions, a syntactic refinement of the positive propositions.13

The admissible identity expansion rules, like the admissible identity rule present in most
unfocused sequent calculus systems, help us write down compact proofs. If F (n) = p+

1 ⊗. . .⊗p+
n ,

then the number of steps in the smallest proof of Γ;F (n) ` F (n) is in Ω(n). However, by using
the admissible identity expansion rule η+, we can represent the proof in a compact way:

Γ; 〈F (n)〉 ` [F (n)] id+

Γ; 〈F (n)〉 ` F (n)
focusR

Γ;F (n) ` F (n)
η+

Permeability as a property of identity expansion

The pattern we want to capture with our new version of identity expansion is the situation where
we are trying to prove a sequent like Γ; ∆ ` 1 or Γ; ∆ ` !A− and we know, by the syntactic
structure of ∆, that inversion will empty the linear context. One instance of this pattern is the
sequent Γ;G(n) ` !↑G(n) where G(n) = !p+

1 ⊗ . . . ⊗ !p+
n . Our goal will be to prove such a

sequent succinctly by suspending the proposition G(n) directly in the persistent context just as
we did with the proof involving F (n) above. To use these suspended propositions, we introduce
a hypothesis rule for positive propositions suspended in the persistent context.

Γ, 〈A+〉; · ` [A+]
id+
p

This rule is, of course, exactly the id+
2 rule from our discussion of Andreoli’s system. There is

also a focal substitution principle, Theorem 2.8. This theorem was true in Andreoli’s system, but
we did not need or discuss it.

Theorem 2.8 (Focal substitution (positive, persistent)).
If Γ; · ` [A+] and Γ, 〈A+〉; ∆′ ` U , then Γ; ∆′ ` U .

Proof. Once again, this is a straightforward induction over the second given derivation, as in a
proof of regular substitution in a natural deduction system. If the second derivation is the axiom
id+
p applied to the suspended proposition 〈A+〉 we are substituting for, then the result follows

immediately using the first given derivation.

Given this focal substitution principle, we can consider the class of permeable positive propo-
sitions. A permeable proposition is one where, when we use the admissible η+ rule to suspend
it in the linear context, we might just as well suspend it in the persistent context, as it decom-
poses entirely into persistent pieces. In other words, we want a class of propositions A+

p such
that Γ, 〈A+

p 〉; ∆ ` U implies Γ; ∆, A+
p ` U ; this is the permeable identity expansion property.

13Permeable negative propositions are relevant to classical linear logic, but the asymmetry of intuitionistic linear
logic means that, for now, it is reasonable to consider permeability exclusively as a property of positive propositions.
We will consider a certain kind of right-permeable propositions in Chapter 3.
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D
Γ, 〈!A〉; ∆ ` U
Γ; ∆, !A ` U

η+
p

=⇒

Γ, A; [A] ` 〈A〉 id
−

Γ, A; · ` 〈A〉
copy

Γ, A; · ` A η−

Γ, A; · ` [!A]
!R

D
Γ, 〈!A〉; ∆ ` U

Γ, A, 〈!A〉; ∆ ` U weaken

Γ, A; ∆ ` U
subst+

p

Γ; ∆, !A ` U !L

D
Γ, 〈1〉; ∆ ` U
Γ; ∆,1 ` U

η+
p =⇒

Γ; · ` [1]
1R D

Γ; ∆, 〈1〉 ` U
Γ; ∆ ` U

subst+
p

Γ; ∆,1 ` U
1L

D
Γ, 〈A⊗B〉; ∆ ` U
Γ; ∆, A⊗B ` U

η+
p

=⇒

Γ, 〈A〉, 〈B〉; · ` [A]
id+
p Γ, 〈A〉, 〈B〉; · ` [B]

id+
p

Γ, 〈A〉, 〈B〉; · ` [A⊗B]

D
Γ, 〈A〉, 〈B〉, 〈A⊗B〉; ∆ ` U

Γ, 〈A⊗B〉; ∆ ` U weaken

Γ, 〈A〉, 〈B〉; ∆ ` U
subst+

p

Γ, 〈A〉; ∆, B ` U
η+
p

Γ; ∆, A,B ` U
η+
p

Γ; ∆, A⊗B ` U
⊗L

Figure 2.14: Persistent identity expansion

It is possible to precisely characterize the MELL propositions that are permeable as a syntactic
refinement of positive propositions:

A+
p ::= !A− | 1 | A+

p ⊗B+
p

In full first-order linear logic, 0, A+
p ⊕ B+

p , and ∃x.A+
p would be included as well; essentially

only p+ and ↓A− are excluded from this fragment.

Theorem 2.9 (Permeable identity expansion). If Γ, 〈A+
p 〉; ∆ ` U , then Γ; ∆, A+

p ` U .

Proof. Induction over the structure of the proposition A+
p or A−. The cases of this proof are

represented in Figure 2.14.

As admissible rules, Theorems 2.8 and 2.9 are written subst+
p and η+

p :

Γ; · ` [A+] Γ, 〈A+〉; ∆ ` U
Γ; ∆ ` U

subst+
p

Γ, 〈A+
p 〉; ∆ ` U

Γ; ∆, A+
p ` U

η+
p
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We can use this persistent identity expansion property to give a compressed proof of our moti-
vating example:

Γ; 〈G(n)〉 ` [G(n)] id+

Γ, 〈G(n)〉; · ` [!G(n)]
!R

Γ, 〈G(n)〉; · ` !G(n)
focusR

Γ;G(n) ` !G(n)
η+
p

Permeable atomic propositions

It would have been possible, in the discussion of focused linear logic in Section 2.3, to present
identity expansion as conceptually prior to atomic propositions. In such a retelling, the η+ and
η− rules can be motivated as the necessary base cases of identity expansion when we have propo-
sitional variables that stand for unknown positive and negative propositions, respectively. Con-
versely, we can now present a new class of permeable atomic propositions p+

p that stand in for
arbitrary permeable propositionsA+

p . These add a new base case to permeable identity expansion
(Theorem 2.9) that can only be satisfied with an explicit η+

p rule:

Γ, 〈p+
p 〉; ∆ ` U

Γ; ∆, p+
p ` U

η+
p

Because the permeable propositions are a syntactic refinement of the positive propositions, p+
p

must be a valid positive atomic proposition as well. This is the revised grammar for intuitionistic
MELL with permeable atomic propositions:

A+ ::= p+ | p+
p | ↓A− | !A− | 1 | A+ ⊗B+

A+
p ::= p+

p | !A− | 1 | A+
p ⊗B+

p

A− ::= p− | ↑A+ | A+ ( B−

This addition to the logic requires some additions to positive identity expansion, cut admis-
sibility, and completeness, but none of the changes are too severe; we consider each in turn.

Identity expansion The new addition to the language of positive propositions requires us to
extend identity expansion with one additional case:

Γ; ∆, 〈p+
p 〉 ` U

Γ; ∆, p+
p ` U

η+
p

=⇒

Γ, 〈p+
p 〉; · ` [p+

p ]
id+
p

Γ; ∆, 〈p+
p 〉 ` U

Γ, 〈p+
p 〉; ∆, 〈p+

p 〉 ` U
weaken

Γ, 〈p+
p 〉; ∆ ` U

subst+
p

Γ; ∆, p+
p ` U

η+
p

Cut admissibility We must clarify the restriction on cut admissibility for our extended logic.
In Theorem 2.4, we required that sequents contain only suspensions of atomic propositions, and
in our generalization of cut admissibility, we need to further require that all suspensions in the
persistent context Γ be permeable and atomic and that all suspensions in the linear context ∆
be non-permeable and atomic. Under this restriction, the proof proceeds much as it did for the
system with the exponential optimization.
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Correctness of focusing There are two ways we can understand the soundness and complete-
ness of focusing for linear logic extended with permeable atomic propositions. One option is to
add a notion of permeable atomic propositions to our core linear logic from Figure 2.1, in which
case soundness and completeness are straightforward. Alternatively, we can use our intuition
that a permeable proposition A is interprovable with !A and let (p+

p )◦ = !p+
p .

The erasure of permeable propositions p+
p in the focused logic to !p+

p in the unfocused logic
reveals that permeable propositions, which we motivated entirely from a discussion of identity
expansion, are effectively a logical treatment of separation. Rather than !+, a separate proposition
that we apply only to positive propositions, permeability is a property intrinsic to a given atomic
proposition, much like the proposition’s positivity or negativity.

2.6 Revisiting our notation
Andreoli, in his 2001 paper introducing the idea of synthetic inference rules [And01], observed
that the atom optimization can lead to an exponential explosion in the number of synthetic rules
associated with a proposition. For instance, if a+⊗b+ ( ↑c+ appears in Γ, the atom optimization
means that the following are all synthetic inference rules for that proposition:

Γ; ∆, 〈c+〉 ` U
Γ; ∆, 〈a+〉, 〈b+〉 ` U

Γ, 〈a+〉; ∆, 〈c+〉 ` U
Γ, 〈a+〉; ∆, 〈b+〉 ` U

Γ, 〈b+〉; ∆, 〈c+〉 ` U
Γ, 〈b+〉; ∆, 〈a+〉 ` U

Γ, 〈a+〉, 〈b+〉; ∆, 〈c+〉 ` U
Γ, 〈a+〉, 〈b+〉; ∆ ` U

Andreoli suggests coping with this problem by restricting the form of propositions so that posi-
tive atoms never appear in the persistent context. From our perspective, this is a rather unusual
recommendation, since it just returns us to linear logic without the atom optimization! The
focused system in Section 2.3, which we have argued is a more fundamental presentation (fol-
lowing Chaudhuri), effectively avoid this problem.

However, it’s not necessary to view Andreoli’s proliferation of rules as a problem with the
logic; rather, it is possible to view it merely as a problem of notation. It is already the case that, in
writing sequent calculus rules, we tacitly use of a fairly large number of notational conventions,
at least relative to Gentzen’s original formulation where all contexts were treated as sequences of
propositions [Gen35]. For instance, the bottom-up reading of the 1R rule’s conclusion, Γ; · ` [1],
indicates the presence of an additional premise checking that the linear context is empty, and the
conclusion Γ; ∆1,∆2 ` [A⊗B] of the ⊗R rule indicates the condition that the context can be
split into two parts. In other words, both the conclusion of the 1R rule and ⊗R rule, as we
normally write them, can be seen as having special matching constructs that constrain the shape
of the context ∆.14

I propose to deal with the apparent proliferation of synthetic rules in a system with the atom
optimization by adding a new matching construct for the conclusion of rules. We can say that

14More than anything else we have discussed so far, this is a view of inference rules that emphasizes bottom-up
proof search and proof construction. A view of linear logic that is informed by the inverse method, or top-down
proof construction, is bound to look very different (see, for example, [Cha06]).
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Γ; ·/p =⇒ p
init

Γ; · =⇒ A

Γ; · =⇒ !A
!R

Γ, A; ∆ =⇒ C

Γ; ∆/!A =⇒ C
!L Γ; · =⇒ 1

1R
Γ; ∆ =⇒ C

Γ; ∆/1 =⇒ C
1L

Γ; ∆ =⇒ A Γ; ∆ =⇒ B

Γ; ∆1,∆2 =⇒ A⊗B
⊗R

Γ; ∆, A,B =⇒ C

Γ; ∆/A⊗B =⇒ C
⊗L

Γ; ∆, A =⇒ B

Γ; ∆ =⇒ A( B
(R

Γ; ∆1 =⇒ A Γ; ∆2, B =⇒ C

Γ; ∆1,∆2/A( B =⇒ C
(L

Figure 2.15: Alternative presentation of intuitionstic linear logic

Γ; ∆ matches Γ; ∆′/〈p+〉 either when 〈p+〉 ∈ Γ and ∆ = ∆′ or when ∆ = (∆′, 〈p+〉). We
can also iterate this construction, so that Γ; ∆ matches Γ; ∆n/〈p+

1 〉, . . . , 〈p+
n 〉 if Γ; ∆ matches

Γ; ∆1/〈p+
1 〉, Γ; ∆1 matches Γ; ∆2/〈p+

2 〉, . . . and Γ; ∆n−1 matches Γ; ∆n/〈p+
n 〉. Armed with this

notation, we can create a concise synthetic connective that is equivalent to the four of the rules
discussed previously:

Γ; ∆, 〈c+〉 ` U
Γ; ∆/〈a+〉, 〈b+〉 ` U

This modified notation need not be reserved for synthetic connectives; we can also use it to
combine the two positive identity rules id+

1 and id+
2 (in the exponential-optimized system) or,

equivalently, id+ and id+
p (in the system incorporating permeability). Furthermore, by giving

Γ; ∆/A− the obviously analogous meaning, we can fuse the focusL rule and the copy rule into a
single rule that is unconcerned with whether the proposition in question came from the persistent
or linear contexts:

Γ; ·/〈A+〉 ` [A+]
id+

Γ; ∆, [A−] ` U
Γ; ∆/A− ` U

focus∗L

Going yet one more step, we could use this notation to revise the original definition of linear
logic in Figure 2.1. The copy rule in that presentation sticks out as the only rule that doesn’t deal
directly with a connective, but we can eliminate it by using the Γ; ∆/A matching construct. The
resulting presentation, shown in Figure 2.15, is equivalent to the presentation in Figure 2.1.

Theorem 2.10. Γ; ∆ −→ C if and only if Γ; ∆ =⇒ C.

Proof. The reverse direction is a straightforward induction: each rule in Figure 2.15 can be
translated as the related rule in Figure 2.1 along with (potentially) an instance of the copy rule.

The forward direction requires a lemma that the copy rule is admissible according to the rules
of Figure 2.15; this lemma can be established by straightforward induction. Having established
the lemma, the forward direction is a straightforward induction on derivations, applying the
admissible rule whenever the copy rule is encountered.
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Chapter 3

Substructural logic

Linear logic is the most famous of the substructural logics. Traditional intuitionistic logic, which
we call persistent to emphasize the treatment of truth as a persistent and reusable resource, ad-
mits the three so-called structural rules of weakening (premises need not be used), contraction
(premises may be used multiple times) and exchange (the ordering of premises are irrelevant).
Substructural logics, then, are logics that do not admit these structural rules – linear logic has
only exchange, affine logic (which is frequently conflated with linear logic by programming lan-
guage designers) has exchange and weakening, and ordered logic, first investigated as a proof
theory by Lambek [Lam58], lacks all three.

Calling logics like linear, affine, and ordered logic substructural relative to persistent logic is
greatly unfair to the substructural logics. Girard’s linear logic can express persistent provability
using the exponential connective !A, and this idea is generally applicable in substructural logics
– for instance, it was applied by Polakow and Pfenning to Lambek’s ordered logic [PP99]. It is
certainly too late to advocate for these logics to be understood as superstructural logics, but that
is undoubtedly what they are: generalizations of persistent logic that introduce more expressive
power.

In this chapter, we will define a first-order ordered linear logic with a lax connective #A
in both unfocused (Section 3.1) and focused (Section 3.3) flavors (this logic will henceforth be
called OL3, for ordered linear lax logic). Then, following the structural focalization methodology
introduced in the previous chapter, we establish cut admissibility (Section 3.4), and identity
expansion (Section 3.5) for focused OL3; with these results, it is possible to prove the soundness
and completeness of focusing (Section 3.6) for OL3. A fragment of this system will form the
basis of the logical framework in Chapter 4, and that framework will, in turn, underpin the rest
of this dissertation.

Why present the rich logic OL3 here if only the fragment detailed in Chapter 4 is needed?
There are two main reasons. First, while we will use only a fragment of this logic in Chap-
ter 4, other fragments of the logic may well be interesting and useful for other purposes. Sec-
ond, the presentation in this chapter, and in particular the discussion of substructural contexts
in Section 3.2, introduces a presentation style and infrastructure that I believe will generalize
to focused presentations of richer logics, such as the logic of bunched implications [Pym02],
non-commutative linear logic (or “rigid logic”) [Sim09], subexponential logics [NM09], and so
on.
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Furthermore, the choice to present a full account of focusing in OL3 is in keeping with as An-
dreoli’s insistence that we should avoid ambiguity as to whether we are “defining a foundational
paradigm or a [logic] programming language (two objectives that should clearly be kept sepa-
rate)” [And01]. Both the full logic OL3 and the general methodology followed in this chapter are
general, foundational paradigms within which it is possible to instantiate families of logic pro-
gramming languages and logical frameworks, even though we will focus on a particular logical
framework starting in Chapter 4.

3.1 Ordered linear lax logic

Ordered linear logic was the subject of Polakow’s dissertation [Pol01]. It extends linear logic
with a notion of ordered resources. In ordered logic the linear multiplicative conjunction A⊗B
of linear logic, which represents that we have both the resources to make anA and aB, is replaced
by a linear multiplicative conjunctionA•B, which represents that we have the resources to make
an A, and they’re to the left of the resources necessary to make a B. Linear implication A( B,
which represents a resource that, given the resources necessary to construct an A, can construct
a B, splits into two propositions in ordered logic. The proposition A� B represents a resource
that, given the resources necessary to construct an A to the left, can construct a B, and the
proposition A� B demands those resource to its right.

Ordered propositions were used by Lambek to model language [Lam58]. The word “clever”
is a adjective that, given a noun to its right, constructs a noun phrase (“ideas” is a noun, and
“clever ideas” is a noun phrase). Therefore, the world “clever” can be seen as an ordered resource
Phrase� NounPhrase. Similarly, the word “quietly” is an adverb that, given a verb to its left,
constructs a verb phrase (“sleeps” is a verb, and “sleeps quietly” is a verb phrase). Therefore,
the word “quietly” can be seen as an ordered resource Verb� VerbPhrase. The key innovation
made by Polakow and Pfenning was integrating both persistent and linear logic into Lambek’s
system with the persistent exponential !A and the mobile exponential ¡A. The latter proposition
is pronounced “A mobile” or, whimsically, “gnab A” in reference to the pronunciation of !A as
“bang A.”

The primary sequent of ordered logic is Γ; ∆; Ω =⇒ A true, which expresses that A is
a resource derivable from the persistent resources in Γ, the ephemeral resources in ∆, and the
ephemeral, ordered resources in Ω. The persistent context Γ and the linear context ∆ are multisets
as before (so we think of ∆1,∆2 as being equal to ∆2,∆1, for instance). The ordered context
Ω is a sequence of propositions, as in Gentzen’s original presentation of sequent calculi, and not
a multiset. This means that the two ordered contexts Ω1,Ω2 and Ω2,Ω1 are, in general, not the
same.

The presentation of ordered linear lax logic in Figure 3.1 uses an ordered logic adaptation of
the matching constructs introduced in Section 2.6; all the left rules in that figure use the construct
Γ; ∆; ΩL/A/ΩR =⇒ U , which matches the sequent Γ; ∆′; Ω′ =⇒ U

∗ if Ω′ = (ΩL, A,ΩR) and ∆′ = ∆;

∗ if Ω′ = (ΩL,ΩR) and ∆′ = (∆, A);

∗ or if Ω′ = (ΩL,ΩR), ∆′ = ∆, and A ∈ Γ.
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Atomic propositions

Γ; ·; /p/ =⇒ p lvl
id

Exponentials
Γ; ∆; · =⇒ A true

Γ; ∆; · =⇒ ¡A lvl
¡R

Γ; ∆, A; ΩL,ΩR =⇒ U

Γ; ∆; ΩL/¡A/ΩR =⇒ U
¡L

Γ; ·; · =⇒ A true

Γ; ·; · =⇒ !A lvl
!R

Γ, A; ∆; ΩL,ΩR =⇒ U

Γ; ∆; ΩL/!A/ΩR =⇒ U
!L

Γ; ∆; Ω =⇒ A lax

Γ; ∆; Ω =⇒ #A lvl
#R

Γ; ∆; ΩL, A,ΩR =⇒ C lax

Γ; ∆; ΩL/#A/ΩR =⇒ C lax
#L

Multiplicative connectives

Γ; ·; · =⇒ 1 lvl
1R

Γ; ∆; ΩL,ΩR =⇒ U

Γ; ∆; ΩL/1/ΩR =⇒ U
1L

Γ; ∆; ΩL =⇒ A true Γ; ∆; ΩR =⇒ B true

Γ; ∆1,∆2; ΩL,ΩR =⇒ A •B lvl
•R

Γ; ∆; ΩL, A,B,ΩR =⇒ U

Γ; ∆; ΩL/A •B/ΩR =⇒ U
•L

Γ; ∆;A,Ω =⇒ B true

Γ; ∆; Ω =⇒ A� B lvl
�R

Γ; ∆A; ΩA =⇒ A true Γ; ∆; ΩL, B,ΩR =⇒ U

Γ; ∆A,∆; ΩL,ΩA/A� B/ΩR =⇒ U
�L

Γ; ∆; Ω, A =⇒ B true

Γ; ∆; Ω =⇒ A� B lvl
�R

Γ; ∆A; ΩA =⇒ A true Γ; ∆; ΩL, B,ΩR =⇒ U

Γ; ∆A,∆; ΩL/A� B/ΩA,ΩR =⇒ U
�L

Additive connectives

Γ; ∆; ΩL/0/ΩR =⇒ U
0L

Γ; ∆; Ω =⇒ A true

Γ; ∆; Ω =⇒ A⊕B lvl
⊕R1

Γ; ∆; Ω =⇒ B true

Γ; ∆; Ω =⇒ A⊕B lvl
⊕R2

Γ; ∆; ΩL, A,ΩR =⇒ U Γ; ∆; ΩL, B,ΩR =⇒ U

Γ; ∆; ΩL/A⊕B/ΩR =⇒ U
⊕L

Γ; ∆; Ω =⇒ > lvl
>R

Γ; ∆; Ω =⇒ A true Γ; ∆; Ω =⇒ B true

Γ; ∆; Ω =⇒ ANB lvl
NR

Γ; ∆; ΩL, A,ΩR =⇒ U

Γ; ∆; ΩL/ANB/ΩR =⇒ U
NL1

Γ; ∆; ΩL, B,ΩR =⇒ U

Γ; ∆; ΩL/ANB/ΩR =⇒ U
NL2

Figure 3.1: Propositional ordered linear lax logic
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As in the alternative presentation of linear logic where copy was admissible, both the copy rule
and a rule Polakow called place are admissible in the logic described in Figure 3.1.

Γ, A; ∆; ΩL, A,ΩR =⇒ U

Γ, A; ∆; ΩL,ΩR =⇒ U
copy

Γ; ∆; ΩL, A,ΩR =⇒ U

Γ; ∆, A; ΩL,ΩR =⇒ U
place

When this notation is used in the rule id , the meaning is that the atomic proposition p is either the
only thing in the ordered context alongside an empty linear context, or else it is the only thing
in the linear context alongside an empty ordered context, or else both the linear and ordered
contexts are empty and p is present in the persistent context. This notion will be called sole
membership in Section 3.2.1.

Ordered linear lax logic also encompasses Fairtlough and Mendler’s lax logic [FM95] as
reconstructed by Pfenning and Davies [PD01] and adapted to linear logic is the basis of the CLF
logical framework [WCPW02]. The judgment A lax is the foundation of ordered logic, and is
usually interpreted as truth under some unspecified constraint or as a weaker version of truth: if
we know A true then we can conclude A lax , but the opposite entailment does not hold.

Γ; ∆; Ω =⇒ A true

Γ; ∆; Ω =⇒ A lax
lax

If we know A lax , on the other hand, we cannot prove A true, though we can prove #A true,
where #A is the propositional internalization of the lax judgment (rule #R in Figure 3.1).

Lax truth is handled with the use of matching constructs, thereby making the rule lax rule
above admissible just like copy and place are admissible. We write all the right rules in Figure 3.1
with a construct Γ; ∆; Ω =⇒ A lvl that matches both sequents of the form Γ; ∆; Ω =⇒ A true
and sequents of the form Γ; ∆; Ω =⇒ A lax – in other words, we treat lvl as a metavariable that
stands for judgments true or lax on the right. The use of this construct gives us right rules for
A⊕B that look like this:

Γ; ∆; Ω =⇒ A true

Γ; ∆; Ω =⇒ A⊕B lvl
⊕R1

Γ; ∆; Ω =⇒ B true

Γ; ∆; Ω =⇒ A⊕B lvl
⊕R2

The metavariable U is even more generic, standing for an arbitrary succedentA true orA lax .
Putting the pieces of ordered linear lax logic together into one sequent calculus in Figure 3.1 is a
relatively straightforward proof-theoretic exercise; the language of propositions is as follows:

Propositions A,B,C ::= p | ¡A | !A | #A |
1 | A •B | A� B | A� B | 0 | A⊕B | > | ANB |
∃a:τ.A | ∀a:τ | t .=τ s

The connectives and 1, 0, A ⊕ B, >, and A N B were not mentioned above but are closely
analogous to their counterparts in linear logic. The first-order connectives ∃a:τ.A, ∀a:τ , and
t
.
=τ s will be discussed presently.
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Ψ ` t : τ Γ; ∆; Ω =⇒ [t/a]B true

Ψ; Γ; ∆; Ω =⇒ ∃a:τ.B lvl
∃R

Ψ, a:τ ; Γ; ∆; ΩL, B,ΩR =⇒ U

Ψ; Γ; ∆; ΩL/∃a:τ.B/ΩR =⇒ U
∃L

Ψ, a:τ ; Γ; ∆; Ω =⇒ B true

Ψ; Γ; ∆; Ω =⇒ ∀a:τ.B lvl
∀R

Ψ ` t : τ Ψ; Γ; ∆; ΩL, [t/a]B,ΩR =⇒ U

Ψ; Γ; ∆; ΩL/∀a:τ.B/ΩR =⇒ U
∀L

Ψ; Γ; ∆; Ω =⇒ t
.
=τ t lvl

.
=R

∀(Ψ′ ` σ : Ψ). σt = σs −→ Ψ′;σΓ;σ∆;σΩL, σΩR =⇒ σU

Ψ; Γ; ∆; ΩL/t
.
=τ s/ΩR =⇒ U

.
=L

Figure 3.2: First-order ordered linear lax logic

3.1.1 First-order logic

The presentation in Figure 3.1 is propositional; by uniformly adding a first-order context Ψ to all
sequents it can be treated as first-order. We define quantification (existential and universal), as
well as first-order equality,1 in Figure 3.2.

The equality proposition t .
=τ s is an interesting addition to our presentation of the logic,

and will be present in the framework SLS defined in the next chapter, albeit in a highly restricted
form. Equality in SLS will be used primarily in the logical transformations presented in Chap-
ter 7 and in the program analysis methodology in Chapter 8. The left rule for equality t .

=τ s
has a higher-order premise, in the sense that it reflects over the definition of simultaneous term
substitutions Ψ′ ` σ : Ψ and over the syntactic equality judgment for first-order terms t = s.
We used this exact style of presentation previously in [SP11b], but the approach is based on
Schroeder-Heister’s treatment of definitional reflection [SH93].

In one sense, the left rule .
=L is actually a rule schema: there is one premise for each substitu-

tion σ that is a unifier for t and s (a unifier is any substitution σ that makes σt and σs syntactically
identical). When we induct over the structure of proofs, there is correspondingly one smaller sub-
derivation for each unifying substitution. By this reading, .=L is a rule that, in general, will have
countably many premises; in the case of a trivially satisfiable equality problem like x .

=τ x it will
have one premise for each well-formed substitution that substitutes a term of the appropriate type
for x. However, as suggested by Zeilberger [Zei08a], it is more auspicious to take the higher-
order formulation at face value: the premise is actually a (meta-level) mapping – a function – that
takes a substitution σ, the codomain Ψ′ of that substitution, and any evidence necessary to show
that σ unifies t and s and returns a derivation of Ψ′;σΓ;σ∆;σΩL, σΩR =⇒ σU . When we in-
duct over the structure of proofs, the result of applying any unifying substitution to this function
is a smaller subderivation for the purpose of invoking the induction hypothesis. This functional
interpretation will be reflected in the proof terms we assign to focused OL3 in Section 3.3.3.

There are two important special cases. First, an unsatisfiable equation on the left implies a
contradiction, and makes the left rule for equality equivalent (at the level of provability) to one

1That is, equality of terms from the domain of first-order quantification.
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with no premises. For instance, this means that

no unifier for t and s
Ψ; Γ; ∆; ΩL/t

.
=τ s/ΩR =⇒ U

.
=no

is derivable – a unifier is just a substitution σ such that σt and σs are syntactically identical. The
other important special case is when t and s have a most general unifier σmgu , which just means
that for all Ψ′ ` σ : Ψ such that σt = σs, it is the case that σ = σ′ ◦ σmgu for some σ′.2 In this
case, the left rule for equality is equivalent (again, at the level of determining which sequents are
provable) to the following rule:

σ = mgu(t, s) Ψ′ ` σ : Ψ Ψ′;σΓ;σ∆;σΩL, σΩR =⇒ σU

Ψ; Γ; ∆; ΩL/t
.
=τ s/ΩR =⇒ U

.
=yes

Therefore, given a first-order domain in which any two terms are decidably either non-unifiable
or unifiable with a most general unifier, we can choose to define the logic with two rules .

=no and
.
=yes ; the resulting logic will be equivalent, at the level of derivable sequents, to the logic defined
with the .

=L rule.
We have not yet thoroughly specified the type and term structure of first-order individuals; in

Section 4.1 we clarify that these types and terms will actually be types and terms of Spine Form
LF. This does mean that we will have to pay attention, in the proofs of this chapter, to the fact
that the types of first-order terms τ are dependent types that may include terms t. Particularly
relevant in this chapter will be simultaneous substitutions σ: the judgment Ψ′ ` σ : Ψ expresses
that σ can map terms and propositions defined in the context Ψ (the domain of the substitution)
to terms and propositions defined in the context Ψ′ (the range of the substitution). Simultaneous
substitutions are defined more carefully in Section 4.1.2 and in [NPP08].

3.2 Substructural contexts
First-ordered linear lax logic has a lot of contexts – the persistent context Γ, the linear context
∆, the ordered context Ω, and the first-order context Ψ. In most presentations of substructural
logics, the many contexts primarily serve to obscure the logic’s presentation and ensure that the
LATEX code of figures and displays remains permanently unreadable. And there are yet more
contexts we might want to add, such as the affine contexts present in the Celf implementation
[SNS08].

In this section, we will consider a more compact way of dealing with the contexts that we in-
terpret as containing resources (persistent, affine, linear, or ordered resources), though we choose
to maintain the distinction between resource contexts and first-order variable contexts Ψ. The
particular way we define substructural contexts can be generalized substantially: it would be
possible to extend this presentation to the affine exponential @A, and we conjecture that the
subexponentials discussed by Nigam and Miller [NM09] as well as richer logics like the logic of
bunched implications [Pym02] could be given a straightforward treatment using this notation.

2Where ◦ is composition – (σ′ ◦ σmgu)t = σ′(σmgu t).
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We write unified substructural contexts as either ∆ or Ξ, preferring the latter when there is a
chance of confusing them with linear contexts ∆. For the purposes of encoding OL3, we can see
these contexts as sequences of variable declarations, defined by the grammar

Ξ ::= · | Ξ, x:T ord | Ξ, x:T eph | Ξ, x:T pers

where each of the variables x are distinct, so that the context also represents a finite map from
variables x to judgments T lvl , where lvl is either ord , eph, or pers . By separating out a sub-
structural context into three subsequences of persistent, linear, and ordered judgments, we can
recover the presentations of contexts for OL3 given in Figure 3.1. We will use this observation
in an informal way throughout the chapter, writing Ξ = Γ; ∆; Ω.

The domain represented by the metavariable T is arbitrary: when discussing the unfocused
logic given in Figure 3.1, T varies over unpolarized propositions A, but when discussing a fo-
cused logic in Section 3.3 it will vary over stable negative propositions A−, positive suspended
propositions 〈A+〉, focused negative propositions [A−], and inverting positive propositions A+.

The key innovation in this presentation was already present in the unfocused logic shown in
Figure 3.1: we need to differentiate constructions, which appear in the premises of rules, and
matching constructs, which appear in the conclusions of rules. The notation Γ; ∆; ΩL/A•B/ΩR

that appears in the conclusion of •L is a matching construct; as discussed in Section 3.1, there
are multiple ways in which a context Γ′; ∆′; Ω′ could match this context, because A • B could
come from any of the three contexts. However, Γ; ∆; ΩL, A,B,ΩR in the premise of •L is a
construction, and is unambiguously equal to only one context Γ′; ∆′; Ω′ – the one where Γ′ = Γ,
∆′ = ∆, and Ω′ = ΩL, A,B,ΩR.

3.2.1 Fundamental operations on contexts

The first fundamental idea we consider is singleton contexts. We construct a single-element con-
text by writing x:T lvl . The corresponding matching construct on contexts is x:T . In unfocused
OL3, we say that Ξ matches x:A if its decomposition into persistent, linear, and ordered contexts
matches Γ; ·; /A/. Specifically,

Definition 3.1 (Sole membership). Ξ matches x:T if
∗ Ξ contains no linear judgments and contains exactly one ordered judgment x:T ord (cor-

responding to the situation where Ξ = Γ; ·;T ),
∗ Ξ contains no ordered judgments and contains exactly one linear judgment x:T eph (cor-

responding to the situation where Ξ = Γ;T ; ·), or
∗ Ξ contains only persistent judgments, including x:T pers (corresponding to the situation

where Ξ = Γ, T ; ·; ·).

Sole membership is related to the initial sequents and the matching construct Γ; ·; /A/ for
contexts that was used in Figure 3.1. We could rewrite the id rule from that figure as follows:

x:p =⇒ p lvl
id
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As with all rules involving matching constructs in the conclusion, it is fair to view the matching
construct as an extra premise; thus, the id rule above is the same as the id rule below:

Ξ matches x:p

Ξ =⇒ p lvl
id

The second basic operation on contexts requires a new concept, frames Θ. Intuitively, we can
view a frame as a the complete set of persistent, linear, and ordered contexts where the ordered
context is missing a particular piece. We can write this missing piece as a box: Γ; ∆; ΩL,2,ΩR.
Alternatively, we can think of a frame as a one-hole context or Huet-style zipper [Hue97] over
the structure of substructural contexts. We will also think of them morally as linear functions
(λΞ.ΞL,Ξ,ΞR) as in [Sim09].

The construction associated with frames, Θ{Ξ}, is just a straightforward operation of filling
in the hole or β-reducing the linear function; doing this requires that the variables in Θ and Ξ be
distinct. If we think of Θ informally as Γ; ∆; ΩL,2,ΩR, then this is almost like the operation of
filling in the hole, as Θ{x:A ord} = Γ; ∆; ΩL, A,ΩR. The main difference is that we can also
use the operation to insert linear propositions (Θ{x:A eph} = Γ; ∆, A; ΩL,ΩR) and persistent
propositions (Θ{x:A pers} = Γ, A; ∆; ΩL,ΩR).

The construction associated with frames is straightforward, but the matching construct as-
sociated with frames is a bit more complicated. Informally, if we treat linear contexts as mul-
tisets and say that Ξ = Γ; ∆,∆′; ΩL,Ω

′,ΩR, then we can say Ξ = Θ{{Ξ′}} in the case that
Θ = Γ; ∆; ΩL,2,ΩR and Ξ′ = Γ; ∆′; Ω′. The sub-context Ξ′, then, has been framed off from Ξ,
its frame is Θ. If we only had ordered judgments T ord , then the framing-off matching construct
Θ{{Ξ′}} would be essentially the same as the construction form Θ{Ξ′}. However, persistent and
linear judgments can be reordered in the process of matching, and persistent judgments always
end up in both the frame and the framed-off context.

Definition 3.2 (Framing off). Ξ matches Θ{{Ξ′}} if the union of the variables in Θ and Ξ′ is
exactly the variables in Ξ and
∗ if x:T pers ∈ Ξ, then the same variable declaration appears in Θ and Ξ′;
∗ if x:T eph ∈ Ξ or x:T ord ∈ Ξ, then the same variable declaration appears in Θ or Ξ′

(but not both);
∗ in both Θ and Ξ′, the sequence of variable declarations x:T ord is a subsequence of Ξ;

and
∗ if x:T ord ∈ Θ, then either

for all y:T ′ ord ∈ Ξ′, the variable declaration for x appeared before the variable
declaration for y in Ξ, or
for all y:T ′ ord ∈ Ξ′, the variable declaration for x appeared after the variable
declaration for y in Ξ.

We can use the framing-off notation to describe one of the cut principles for ordered linear
lax logic as follows:

Ξ =⇒ A true Θ{x:A true} =⇒ C true

Θ{{Ξ}} =⇒ C true
cut
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Especially for the eventual proof of this cut principle, it is important to consider that the admis-
sible rule above is equivalent to the following admissible rule, which describes the matching as
an explicit extra premise:

Ξ =⇒ A true Θ{x:A true} =⇒ C true Ξ′ matches Θ{{Ξ}}
Ξ′ =⇒ C true

cut

An important derived matching construct is Θ{{x:T}}, which matches Ξ if Ξ matches Θ{{Ξ′}}
for some Ξ′ such that Ξ′ matches x:T . This notation is equivalent to the matching construct
Γ; ∆; ΩL/A/ΩR =⇒ U from Figure 3.1, which is need to describe almost every left rule for
OL3. Here are three rules given with this matching construct:

Θ{y:A ord} =⇒ U Θ{z:B ord} =⇒ U

Θ{{x:A⊕B}} =⇒ U

Θ{y:A ord} =⇒ U

Θ{{x:ANB}} =⇒ U

Θ{y:B ord} =⇒ U

Θ{{x:ANB}} =⇒ U

To reemphasize, the reason we use the matching construct Θ{{x:A}} in the conclusions of
rules is the same reason that we used the notation Γ; ∆; ΩL/A/ΩR in Figures 3.1 and 3.2: it
allows us to generically talk about hypotheses associated with the judgments ord , eph, and pers .
The following rules are all derivable using the last of the three rules above:

Θ{y:B ord} =⇒ U

Θ{x:ANB ord} =⇒ U

Θ{y:B ord} =⇒ U

Θ{x:ANB eph} =⇒ U

Θ{x:ANB pers , y:B ord} =⇒ U

Θ{x:ANB pers} =⇒ U

The consistent use of matching constructs like Θ{{∆}} in the conclusion of rules is also what
gives us the space to informally treat syntactically distinct sequences of variable declarations
as equivalent. As an example, we can think of (x:A eph, y:B eph) and (y:B eph, x:A eph) as
equivalent by virtue of the fact that they satisfy the same set of matching constructs. Obviously,
this means that none of the matching constructs presented in the remainder of this section will
observe the ordering of ephemeral or persistent variable declarations.

3.2.2 Multiplicative operations
To describe the multiplicative connectives of OL3, including the critical implication connectives,
we need to have multiplicative operations on contexts. As a construction, ΞL,ΞR is just the
syntactic concatenation of two contexts with distinct variable domains, and the unit · is just the
empty sequence. The matching constructs are more complicated to define, but the intuition is,
again, uncomplicated: if Ξ = Γ; ∆,∆′; ΩL,ΩR, where linear contexts are multisets and ordered
contexts are sequences, then Ξ = ΞL,ΞR if ΞL = Γ; ∆; ΩL and ΞR = Γ; ∆′; ΩR. Note that here
we are using the same notation for constructions and matching constructs: ΞL,ΞR is a matching
construct when it appears in the conclusion of a rule, ΞL,ΞR is a construction when it appears in
the premise of a rule.

Definition 3.3 (Conjunction).
Ξ matches · if Ξ contains only persistent judgments.
Ξ matches ΞL,ΞR if the union of the variables in ΞL and ΞR is exactly the variables in Ξ and
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∗ if x:T pers ∈ Ξ, then the same variable declaration appears in ΞL and ΞR;
∗ if x:T eph ∈ Ξ or x:T ord ∈ Ξ, then the same variable declaration appears in ΞL or ΞR

(but not both);
∗ in both ΞL and ΞR, the sequence of variable declarations x:T ord is a subsequence of Ξ;

and
∗ if x:T ord ∈ ΞL and y:T ′ ord ∈ ΞR, then the variable declaration for x appeared before

the variable declaration for y in Ξ.

The constructs for context conjunction are put to obvious use in the description of multiplica-
tive conjunction, which is essentially just the propositional internalization of context conjunction:

ΞL =⇒ A true ΞR =⇒ B true
ΞL,ΞR =⇒ A •B lvl

Θ{y:A, z:B} =⇒ U

Θ{{x:A •B}} =⇒ U · =⇒ 1 lvl

Θ{·} =⇒ U

Θ{{x:1}} =⇒ U

x:A ord ,Ξ =⇒ B true

Ξ =⇒ A� B lvl

ΞA =⇒ A true Θ{y:B ord} =⇒ U

Θ{{ΞA, x:A� B}} =⇒ U

Ξ, x:A ord =⇒ B true

Ξ =⇒ A� B lvl

ΞA =⇒ A true Θ{y:B ord} =⇒ U

Θ{{x:A� B,ΞA}} =⇒ U

Implication makes deeper use of context conjunction: Ξ matches Θ{{ΞA, x:A� B}} exactly
when there exist Ξ′ and Ξ′′ such that Ξ matches Θ{{Ξ′}}, Ξ′ matches ΞA,Ξ

′′, and x:A � B
matches Ξ′′.

3.2.3 Exponential operations
The exponentials ! and ¡ do not have a construction form associated with them, unless we view the
singleton construction forms x:T pers and x:T eph as being associated with these exponentials.
The matching construct is quite simple: Ξ matches Ξ�pers if Ξ contains no ephemeral or ordered
judgments – in other words, it says that Ξ = Γ; ·; ·. This form can then be used to describe the
right rule for !A in unfocused OL3:

Ξ =⇒ A true
Ξ�pers =⇒ !A lvl

Similarly, Ξ matches Ξ�eph if Ξ contains no ordered judgments (that is, if Ξ = Γ; ∆; ·). Ξ always
matches Ξ�ord ; we don’t ever explicitly use this construct, but it allows us to generally refer to
Ξ�lvl in the statement of theorems like cut admissibility.

The exponential matching constructs don’t actually modify contexts in the way other match-
ing constructs do, but this is a consequence of the particular choice of logic we’re considering.
Given affine resources, for instance, the matching construct associated with the affine connective
@A would clear the context of affine facts: Ξ matches Ξ′�pers if Ξ has only persistent and affine
resources and Ξ′ contains the same persistent resources as Ξ but none of the affine ones.

We can describe a mirror-image operation on succedentsU . U matchesU�lax only if it has the
form T lax , and U always matches U�true . The latter matching construct is another degenerate
form that similarly allows us to refer to U�lvl as a generic matching construct. We write ∆�lvl as
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In the context ∆ As the succedent U
stable propositions x:A− ord , eph, pers A+ true, lax

suspended propositions (also stable) x:〈A+〉 ord , eph, pers 〈A−〉 true, lax

focused propositions x:[A−] ord [A+] true

inverting propositions x:A+ ord A− true

Figure 3.3: Summary of where propositions and judgments appear in OL3 sequents

a judgment to mean that ∆ matches ∆�lvl , and write U�lvl as a judgment to mean that U matches
U�lvl .

The context constructions and context matching constructs that we have given are summa-
rized as follows:

Constructions ∆,Ξ ::= x:T lvl | Θ{∆} | · | ∆,Ξ
Matching constructs ∆,Ξ ::= x:T | Θ{{∆}} | · | ∆,Ξ | ∆�lvl

3.3 Focused sequent calculus
A sequent in the focused sequent calculus presentation of OL3 has the form Ψ; ∆ ` U , where
Ψ is the first-order variable context, ∆ is a substructural context as described in the previous
section, and U is a succedent. The domain T of the substructural context consists of stable
negative propositions A−, positive suspended propositions 〈A+〉, focused negative propositions
[A−], and inverting positive propositions A+.

The form of the succedentU is T lvl , where lvl is either true or lax ; in this way, U is just a like
a special substructural context with exactly one element – we don’t need to care about the name
of the variable, because there’s only one. The domain of T for succedents is complementary to
the domain of T for contexts: stable positive propositions A+, negative suspended propositions
〈A−〉, focused positive propositions [A+], and inverting negative propositions A−.

Figure 3.3 summarizes the composition of contexts and succedents, taking into account the
restrictions discussed below.

3.3.1 Restrictions on the form of sequents
A sequent Ψ; ∆ ` U is stable when the context ∆ and succedent U contain only stable proposi-
tions (A− in the context, A+ in the succedent) and suspended propositions (〈A+〉 in the context,
〈A−〉 in the succedent). We adopt the focusing constraint discussed in Chapter 2: there is only
ever at most one focused proposition in a sequent, and if there is focused proposition in the
sequent, then the sequent is otherwise stable. A restriction on the rules focusL and focusR (pre-
sented below in Figure 3.5) is sufficient to enforce this restriction: reading rules from top down,
we can only use a rule focusL or focusR to prove a stable sequent, and reading rules from bottom
up, we can only apply focusL or focusR when we are searching for a proof of a stable sequent.
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Because there is always a distinct focused proposition in a sequent, we do not need a variable
name to reference the focused proposition in a context ∆ any more than we need a variable
name to reference the unique member of the context-like succedent U . Therefore, we can write
[B−] ord instead of x:[B−] ord . Furthermore, for presentation of focusing that we want to give
it suffices to restrict focused propositions and inverting propositions so that they are always
associated with the judgment ord (on the left) or true (on the right). With this restriction, we
can write [A−] and x:A+ instead of [A−] ord and x:A+ ord in ∆, and we can write [A+] and A−

instead of [A+] true and A− true for U .
In a confluent presentation of focused logic like the one given for linear logic in Chapter 2,

that would be as far as we could take our simplifications. However, this presentation will use
a fixed presentation of logic from the structural focalization development as described in Sec-
tion 2.3.8. If there is more than one invertible proposition in a sequent, only the leftmost one
will be treated as eligible to have a rule or matching applied to it. All the propositions in ∆
are treated as being to the left of the succedent U , so we always prioritize inversion on positive
propositions in ∆. With this additional restriction, it is always unambiguous which proposition
we are referring to in an invertible rule, and we write A+ instead of x:A+ or x:A+ ord .

We will maintain the notational convention (only) within this chapter that first-order variables
are written as a, variables associated with stable negative propositions are written as x, and
variables associated with suspended positive propositions are written as z.

In summary, the four forms of sequent in focused OL3, which we define the rules for in
Section 3.3.3 below, are:

∗ Right focused sequents Ψ; ∆ ` [A+] (where ∆ is stable, containing only variable declara-
tions x:A− lvl or x:〈A+〉 lvl ),

∗ Inversion sequents Ψ; ∆ ` U (where ∆ contains variable declarations x:A− lvl , x:〈A+〉 lvl
and inverting positive propositions A+ and where U is either A+ lvl , 〈A−〉 lvl , or an invert-
ing negative proposition A−),

∗ Stable sequents, the special case of inversion sequents that contain no inverting positive
propositions in ∆ or inverting negative propositions in U .

∗ Left focused sequents Ψ; Θ{[A+]} ` U (where Θ and U are stable – Θ contains only
variable declarations x:A− lvl or x:〈A+〉 lvl and U is either A+ lvl or 〈A−〉 lvl ).

3.3.2 Polarized propositions

The propositions of ordered logic are fundamentally sorted into positive propositions A+ and
negative propositionsA−; both classes, and the inclusions between them, are shown in Figure 3.4.
The positive propositions have a refinement, permeable propositions A+

pers , that is analogous to
the refinement discussed for linear logic in Section 2.5.4. There is also a more generous refine-
ment, the mobile propositions, A+

eph , for positive propositions that do not mention ↓ but that may
mention ¡. We introduce atomic propositions p+ that stand for arbitrary positive propositions,
mobile atomic propositions p+

eph that stand for arbitrary mobile propositions, and persistent p+
pers

that stand for arbitrary permeable propositions. We treat A+
ord and p+

ord as synonymous with A+

and p+, respectively, which allows us to generically refer to A+
lvl and p+

lvl in rules like η+ and in
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A+ ::= p+ | p+
eph | p

+
pers | ↓A− | ¡A− | !A− | 1 | A+ •B+ | 0 | A+ ⊕B+ | ∃a:τ.A+ | t .=τ s

A+
eph ::= p+

eph | p
+
pers | ¡A− | !A− | 1 | A+

eph •B
+
eph | 0 | A

+
eph ⊕B

+
eph | ∃a:τ.A+

eph | t
.
=τ s

A+
pers ::= p+

pers | !A− | 1 | A+
pers •B+

pers | 0 | A+
pers ⊕B+

pers | ∃a:τ.A+
pers | t

.
=τ s

A− ::= p− | p−lax | ↑A
+ | #A+ | A+ � B− | A+ � B− | > | A− NB− | ∀a:τ.A−

A−lax ::= p−lax | #A+ | A+ � B−lax | A
+ � B−lax | > | A

−
lax NB−lax | ∀a:τ.A−lax

Figure 3.4: Propositions of polarized OL3

the statement of the identity expansion theorem.

Negative propositions also have a refinement, A−lax , for negative propositions that do not end
in an upshift ↑A+ or in a negative atomic proposition p−. This is interesting as a formal artifact
and there is very little overhead involved in putting it into our development, but the meaning
of this syntactic class, as well as the meaning of right-permeable atomic propositions p−lax , is
unclear. Certainly we do not want to include such propositions in our logical framework, as to
do so would interfere with our development of traces as a syntax for partial proofs in Chapter 4.

The presentation of the exponentials, and the logic that we now present, emphasizes the
degree to which the shifts ↑ and ↓ have much of the character of exponentials in a focused
substructural logic. The upshift ↑A+ is like an ordered variant of the lax truth #A+ that puts
no constraints on the form of the succedent, and the downshift ↓A− is like an ordered variant of
the persistent and linear exponentials !A− and ¡A− that puts no constraints on the form of the
context. This point is implicit in Laurent’s dissertation [Lau02]. In that dissertation, Laurent
defines the polarized LLP without the shifts ↑ and ↓, so that the only connection points between
the polarities are the exponentials. Were it not for atomic propositions, the resulting logic would
be more persistent than linear, a point we will return to in Section 3.7.

3.3.3 Derivations and proof terms

The multiplicative and exponential fragment of focused OL3 is given in Figure 3.5, the additive
fragment is given in Figure 3.6, and the first-order connectives are treated in Figure 3.7. We
follow the convention of using matching constructs in the conclusions of rules and constructions
in the premises with the exception of rules that are at the leaves, such as id+ and .

=R, where we
write out the matching condition as a premise.

These rules are all written with sequents of the form Ψ; ∆ ` E : U , where E is a proof term
that corresponds to a derivation of that sequent. Just as sequent forms are divided into the right-
focused, inverting, and left-focused sequents, we divide expressions into values V , derivations
of right-focused sequents; terms N , derivations of inverting sequents; and spines Sp, derivations
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Focus, identity, and atomic propositions

∆ ` V : [A+]

∆ ` V : A+ lvl
focus∗R

Θ{[A−]} ` Sp : U

Θ{{x:A−}} ` x · Sp : U
focus∗L

Θ{z:〈p+
lvl 〉 lvl} ` N : U

Θ{{p+
lvl}} ` 〈z〉.N : U

η+ ∆ matches z:〈A+〉
∆ ` z : [A+]

id+

∆ ` N : 〈p−lvl 〉 lvl
∆ ` 〈N〉 : p−lvl

η−
∆ matches [A−]

∆ ` NIL : 〈A−〉 lvl id−

Shifts and modalities
∆ ` N : A−

∆ ` ↓N : [↓A−]
↓R

Θ{x:A− ord} ` N : U

Θ{{↓A−}} ` ↓x.N : U
↓L

∆ ` N : A−

∆�eph ` ¡N : [¡A−]
¡R

Θ{x:A− eph} ` N : U

Θ{{¡A−}} ` ¡x.N : U
¡L

∆ ` N : A−

∆�pers ` !N : [!A−]
!R

Θ{x:A− pers} ` N : U

Θ{{!A−}} ` !x.N : U
!L

∆ ` N : A+ true
∆ ` ↑N : ↑A+

↑R
Θ{A+} ` N : U

Θ{{[↑A+]}} ` ↑N : U
↑L

∆ ` N : A+ lax
∆ ` {N} : #A+

#R
Θ{A+} ` N : U

Θ{{[#A+]}} ` {N} : U�lax
#L

Multiplicative connectives
∆ matches ·
∆ ` () : [1]

1R
Θ{·} ` N : U

Θ{{1}} ` ().N : U
1L

∆1 ` V1 : [A+] ∆2 ` V2 : [B+]

∆1,∆2 ` V1 • V2 : [A+ •B+]
•R

Θ{A+, B+} ` N : U

Θ{{A+ •B+}} ` •N : U
•L

A+,∆ ` N : B−

∆ ` λ<N : A+ � B−
�R

∆A ` V : [A+] Θ{[B]} ` Sp : U

Θ{{∆A, [A� B]}} ` V <Sp : U
�L

∆, A+ ` N : B−

∆ ` λ>N : A+ � B−
�R

∆A ` V : [A+] Θ{[B]} ` Sp : U

Θ{{[A� B],∆A}} ` V >Sp : U
�L

Figure 3.5: Multiplicative, exponential fragment of focused OL3 (contexts Ψ suppressed)
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Θ{{0}} ` ABORT : U
0L

∆ ` V : [A+]

∆ ` INL(V ) : [A+ ⊕B+]
⊕R1

∆ ` V : [B+]

∆ ` INR(V ) : [A+ ⊕B+]
⊕R2

Θ{A+} ` N1 : U Θ{B+} ` N2 : U

Θ{{A+ ⊕B+}} ` [N1, N2] : U
⊕L

∆ ` > : > >R
∆ ` N1 : A− ∆ ` N2 : B−

∆ ` N1 NN2 : A− NB−
NR

Θ{[A−]} ` Sp : U

Θ{{[A− NB−]}} ` π1;Sp : U
NL1

Θ{[B−]} ` Sp : U

Θ{{[A− NB−]}} ` π2;Sp : U
NL2

Figure 3.6: Additive connectives of focused OL3 (contexts Ψ suppressed)

Ψ ` t : τ Ψ; ∆ ` V : [[t/a]A+]

Ψ; ∆ ` t, V : [∃a:τ.A+]
∃R

Ψ, a:τ ; Θ{A+} ` N : U

Ψ; Θ{{∃a:τ.A+}} ` a.N : U
∃L

∆ matches ·
Ψ; ∆ ` REFL : t

.
=τ t

.
=R

∀(Ψ′ ` σ : Ψ). σt = σs −→ Ψ′;σΘ{·} ` φ(σ) : σU

Ψ; Θ{{t .=τ s}} ` UNIF (fnσ ⇒ φ(σ)) : U
.
=L

Ψ, a:τ ; ∆ ` N : A−

Ψ; ∆ ` [a].N : ∀a:τ.A−
∀R

Ψ ` t : τ Ψ; Θ{[[t/a]A−]} ` Sp : U

Ψ; Θ{{[∀a:τ.A−]}} ` [t];Sp : U
∀L

Figure 3.7: First-order connectives of focused OL3

of left-focused sequents. The structure of values, terms, and spines is as follows:

Values V ::= z | ↓N | ¡N | !N | () | V1 • V2 | INL(V ) | INR(V ) | t, V | REFL

Terms N ::= V | x · Sp | 〈z〉.N | 〈N〉 | ↓x.N | ¡x.N | !x.N | ↑N | {N}
| •N | λ<N | λ>N | ABORT | [N1, N2] | > | N1 NN2 | a.N | [a].N

| UNIF (fnσ ⇒ φ(σ))

Spines Sp ::= NIL | ↑N | {N} | V <Sp | V >Sp | π1; Sp | π2; Sp | [t]; Sp

It is possible to take a “Curry-style” view of expressions as extrinsically typed, which means
we consider both well-typed and ill-typed expressions; the well-typed expressions are then those
for which the sequent Ψ; ∆ ` E : U is derivable. However, we will take the “Church-style”
view that expressions are intrinsically typed representatives of derivations: that is, Ψ; ∆ ` E : U
expresses thatE is a derivation of the sequent Ψ; ∆ ` U . To justify this close correspondence, we
require the inductive structure of expressions to be faithful to the inductive structure of proofs;
this is one reason that we don’t introduce the patterns that are common in other proof term
assignments for focused logic [WCPW02, LZH08, Kri09]. (In Section 4.2.4, a limited syntax for
patterns is introduced as part of the logical framework SLS.)

Proof terms for the left and right identity rules include angle brackets that reflect the notation
for suspended propositions: 〈N〉 for η− and 〈z〉.N for η+. We distinguish proof terms dealing
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with existential quantifiers from those dealing with universal quantifiers in a nonstandard way
by using square brackets for the latter: [t]; Sp and [a].N represent the left and right rules for
universal quantification, whereas a.N and t, V represent the left and right rules for existential
quantification. Other than that, the main novelty in the proof term language and in Figures 3.5-
3.7 is again the treatment of equality. We represent the proof term corresponding to the left rule
for equality as UNIF (fnσ ⇒ φ(σ)), where (fnσ ⇒ φ(σ)) is intended to be a function from
unifying substitutions σ to proof terms. This corresponds to the view of the .

=L rule that takes
the higher-order formulation seriously as a function, and we treat any proof term φ(σ)) where σ
is a unifying substitution as a subterm of UNIF (fnσ ⇒ φ(σ)).

There are two caveats to the idea that expressions are representatives of derivations. One
caveat is that, in order for there to be an actual correspondence between expressions and terms,
we need to annotate all variables with the judgment they are associated with, and we need to
annotate the proof terms INR(V ), INL(V ), π1; Sp, and π2; Sp with the type of the branch not
taken. Pfenning writes these as superscripts [Pfe08], but we will follow Girard in leaving them
implicit [GTL89]. The second caveat is that, because we do not explicitly represent the signif-
icant bookkeeping associated with matching constructs in proof terms, if Ψ; ∆ ` E : U , then
Ψ, a:τ ; ∆, x:A+ pers ` E : U as well. Therefore, even given appropriate type annotations, when
we say that some expression E is a derivation of Ψ; ∆ ` U , it is only uniquely a derivation of
that sequent if we account for the implicit bookkeeping on contexts. It is likely that the first
caveat can be largely dismissed by treating Figures 3.5-3.7 as bidirectional type system for proof
terms. Addressing the second caveat will require a careful analysis of when the bookkeeping on
contexts can be reconstructed, which we leave for future work.

The proof terms presented here mirror our formulation of a logical framework in the next
chapter. Additionally, working on the level of proof terms allows for a greatly compressed pre-
sentation of cut admissibility and identity expansion that emphasizes the computational nature
of these proofs: cut admissibility clearly generalizes the hereditary substitution operation in so-
called spine form presentations of LF [CP02], and identity expansion is, computationally, a novel
η-expansion property on proof terms [Sim11]. To be fair, much of this compression is due to ne-
glecting the implicit bookkeeping associated with matching constructs, bookkeeping that must
be made explicit in proofs like the cut admissibility theorem.

One theorem that takes place entirely at the level of this implicit bookkeeping is the admis-
sible weakening lemma: if ∆′ contains only persistent propositions and N is a derivation of
Ψ; ∆ ` U , then N is also a derivation of Ψ; ∆,∆′ ` U . As usual, this proof can be established
by straightforward induction on the structure of N .

3.3.4 Variable substitution
The first-order variables introduced by universal quantifiers (on the right) and existential quan-
tifiers (on the left) are proper variables in the sense that the meaning of first-order variables is
given by substitution [Har12, Chapter 1]. A sequent with free variables is thus a generic repre-
sentative of all the sequents that can be obtained by plugging terms in for those free variables
through the operation of substitution. This intuition is formalized by the variable substitution
theorem, Theorem 3.4.

70



October 15, 2012
DRAFT

Theorem 3.4 (Variable substitution). If Ψ′ ` σ : Ψ and Ψ; ∆ ` U , then Ψ′;σ∆ ` σU .

Proof. On the level of proof terms, we are given E, a expression corresponding to a derivation
of Ψ; ∆ ` U ; we are defining the operation σE, an expression corresponding to a derivation of
Ψ′;σ∆ ` σU .

Propositional fragment For the exponential, multiplicative, and additive fragments, this op-
eration is simple to define at the level of proof terms, and we will omit most of the cases:
σ(V1 • V2) = σV1 • σV2, σ(↓x.N) = ↓x.σN , and so on. (Note that first-order variables a
do not interact with variables x and z in the substructural context.) However, this compact no-
tation does capture a great deal of complexity. In particular, it is important to emphasize that
we need lemmas saying that variable substitution is compatible with all the context matching
operations from Section 3.2. In full detail, these two simple cases would be:

– σ(V1 • V2) = σV1 • σV2

We are given a proof of Ψ; ∆ ` [A+ •B+] that ends with the •R rule; the subderivations
are V1, a derivation of Ψ; ∆1 ` [A+], and V2, a derivation of Ψ; ∆2 ` [B+]. Further-
more, we know that ∆ matches ∆1,∆2. We need a lemma that tells us that σ∆ matches
σ∆1, σ∆2; then, by rule •R, it suffices to show that Ψ′;σ∆1 ` σA+ (which we have by
the induction hypothesis on σ and V1) and that Ψ′;σ∆2 ` σB+ (which we have by the
induction hypothesis on σ and V2).

– σ(↓x.N) = ↓x.σN
We are given a proof of Ψ; ∆ ` U that ends with ↓L; the subderivation is N , a derivation
of Ψ; Θ{x:A− ord} ` U . Furthermore, we know that ∆ matches Θ{{↓A−}}. We need a
lemma that tells us that σ∆ matches σΘ{{↓σA−}}; then, by rule ↓L, it suffices to show
Ψ′;σΘ{x:σA− ord} ` σU (which we have by the induction hypothesis on σ and N ).

First-order fragment We will present variable substitution on the first-order fragment fully.
Note the .

=L rule in particular, which does not require an invocation of the induction hypothesis.
The cases for the ∃ quantifier mimic the ones we give for the ∀ quantifier, and so the discussion
of these cases is omitted.

– σ(t, N) = (σt, σN)

– σ(a.Sp) = a.(σ, a/a)Sp

– σ(REFL) = REFL

– σ(UNIF (fnσ′′ ⇒ φ(σ′′))) = UNIF (fn σ′ ⇒ φ(σ′ ◦ σ))

We are given a proof of Ψ; ∆ ` U that ends with .
=L; we know that ∆ matches Θ{{t .= s}},

and the subderivation is φ, a function from substitutions Ψ′′ ` σ′′ : Ψ that unify t and
s to derivations of Ψ′′;σ′′Θ{·} ` σ′′U . We need a lemma that tells us that σ∆ matches
σΘ{{σt .= σs}}; then, by rule .

=L, it suffices to show that for all Ψ′′ ` σ′ : Ψ′ that unify σt
and σs, there exists a derivation of Ψ′′;σ′(σΘ){·} ` σ′(σU), which is the same thing as a
derivation of Ψ′′; (σ′ ◦ σ)Θ{·} ` (σ′ ◦ σ)U . We have that Ψ′′ ` σ′ ◦ σ : Ψ, and certainly
σ′ ◦ σ unifies t and s, so we can conclude by passing σ′ ◦ σ to φ.
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– σ([a].N) = [a].(σ, a/a)N

We are given a proof of Ψ; ∆ ` ∀a:τ.A− that ends with ∀R; the subderivation is N , a
derivation of Ψ, a:τ ; ∆ ` A−. Because σ(∀a:τ.A−) = ∀a:στ.(σ, a/a)A−, by rule ∀R it
suffices to show Ψ′, a:στ ;σ∆ ` (σ, a/a)A−, which is the same thing as Ψ′, a:στ ; (σ, a/a)∆ `
(σ, a/a)A−. The result follows by the induction hypothesis on (σ, a/a) and N .

– σ([t]; Sp) = [σt];σSp

We are given a proof of Ψ; ∆ ` U that ends with ∀L; the subderivation is Sp, a derivation
of Ψ; Θ{[t/a]Sp} ` U . Furthermore, we know that ∆ matches Θ{{[∀a:τ.A]}}. We need
a lemma that tells us that σ∆ matches σΘ{{[∀a:τ.(σ, a/a)A−]}}; then, by rule ∀L, it suffices
to show Ψ′;σΘ{[[σt/a](σ, a/a)A−]} ` σU , which is the same thing as Ψ′;σΘ{[σ([t/a]A−)]} `
σU . This follows by the induction hypothesis on σ and Sp.

Note that, in the case for ∀R, the substitution σ was applied to the first-order type τ as well
as to the proposition A−. This alludes to the fact that our first-order terms are dependently typed
(Section 4.1).

Given that we write the constructive content of the variable substitution theorem as σE,
where E is an expression, we can also write Theorem 3.4 as an admissible rule in one of two
ways, both with and without proof terms:

Ψ′ ` σ : Ψ Ψ; ∆ ` E : U

Ψ′;σ∆ ` σE : σU
varsubst

Ψ′ ` σ : Ψ Ψ; ∆ ` U
Ψ′;σ∆ ` σU varsubst

We will tend towards the expression-annotated presentations, such as the one on the left, in this
chapter.

3.3.5 Focal substitution
Both cut admissibility and identity expansion depend on the same focal substitution theorem
that was considered for linear logic in Section 2.3.4. Both of these theorems use the compound
matching construct Θ{{∆�lvl}}, a pattern that will also be used in the proof of cut admissibility:
∆′ matches Θ{{∆�lvl}} if ∆�lvl (which, again, is a shorthand way of saying ∆ matches ∆�lvl ) and
if ∆′ matches Θ{{∆}}.

Theorem 3.5 (Focal substitution).
∗ If Ψ; ∆ ` [A+], Ψ; Θ{z:〈A+〉 lvl} ` U ,

and Ξ matches Θ{{∆�lvl}}, then Ψ; Ξ ` U
∗ If Ψ; ∆ ` 〈A−〉 lvl , Ψ; Θ{[A−]} ` U ,

Ξ matches Θ{{∆}}, and U�lvl , then Ψ; Ξ ` U

Proof. The computational content of positive focal substitution is the substitution of a value
V for a variable z in an expression E, written [V/z]E. As an admissible rule, positive focal
substitution is represented as follows:

Ψ; ∆ ` V : [A+] Ψ; Θ{z:〈A+〉 lvl} ` E : U

Ψ; Θ{{∆�lvl}} ` [V/z]E : U subst+
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The proof of positive focal substitution proceeds by induction over the derivation E containing
the suspended proposition. In the case whereE = z, the derivation z concludes by right focusing
on the proposition that we have a focused proof V of, so the result we are looking for is V .

The computational content of negative focal substitution is the substitution of a spine Sp,
which represents a continuation, out of an expression E waiting on that continuation, written
[E]Sp. As an admissible rule, negative focal substitution is represented as follows:

Ψ; ∆ ` E : 〈A−〉 lvl Ψ; Θ{[A−]} ` Sp : U

Ψ; Θ{{∆}} ` [E]Sp : U�lvl
subst−

The proof of negative focal substitution proceeds by induction over the derivation E containing
the suspended proposition. In the case where E = NIL, the derivation NIL concludes by left
focus on the proposition that we have a spine Sp for, so the result we are looking for is Sp.

Pay attention to the way compound matching constructs are being used. In unfocused OL3,
using the compound notation effectively means that a single statement:

If ∆ =⇒ A true, Θ{x:A lvl} =⇒ C true, and ∆′ matches Θ{{∆�lvl}}, then ∆′ =⇒ C.
can simultaneously express three cut principles:

∗ If Γ; ·; · =⇒ A true and Γ, A; ∆′; Ω′ =⇒ C true, then Γ; ∆′; Ω′ =⇒ C true.

∗ If Γ; ∆; · =⇒ A true and Γ; ∆′, A; Ω′ =⇒ C true, then Γ; ∆′,∆; Ω′ =⇒ C true.

∗ If Γ; ∆; Ω =⇒ A true and Γ; ∆′; ΩL, A,ΩR =⇒ C true,
then Γ; ∆′,∆; ΩL,Ω,ΩR =⇒ C true.

As an admissible rule, we write these three cut principles generically as:

∆ =⇒ A true Θ{x:A lvl} =⇒ C true

Θ{{∆�lvl}} =⇒ C true
unfocused -cut

In the negative focal substitution (as the leftist substitutions of cut admissibility), there is a
corresponding use of U�lvl to capture that we can use a proof of A true to discharge a hypothesis
of A ord in a proof of C true or a proof of C lax , but that a proof of A lax can only discharge a
hypothesis of A ord in a proof of C lax .

3.4 Cut admissibility
It is a little wordy to say that, in a context or succedent, the only judgments involving suspensions
are (〈p+

pers〉 pers), (〈p+
eph〉 eph), (〈p+〉 ord), (〈p−〉 true), and (〈p−lax 〉 lax ), but this is a critical

precondition of cut admissibility property for focused OL3. We’ll call contexts and succedents
with this property suspension-normal.

Theorem 3.6 (Cut admissibility). For suspension-normal Ψ, A+, A−, ∆, Θ, Ξ, and U ,
1. If Ψ; ∆ ` [A+], Ψ; Θ{A+} ` U ,

and Ξ matches Θ{{∆}}, then Ψ; Ξ ` U .
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2. If Ψ; ∆ ` A−, Ψ; Θ{[A−]} ` U , ∆ is stable,
and Ξ matches Θ{{∆}}, then Ψ; Ξ ` U .

3. If Ψ; ∆ ` A+ lvl , Ψ; Θ{A+} ` U , Θ and U are stable,
Ξ matches Θ{{∆}}, and U�lvl , then Ψ; Ξ ` U .

4. If Ψ; ∆ ` A−, Ψ; Θ{x:A− lvl} ` U , ∆ is stable,
and Ξ matches Θ{{∆�lvl}}, then Ψ; Ξ ` U

The four cases of cut admissibility (and their proof below) neatly codify an observation about the
structure of cut admissibility proofs made by Pfenning in his work on structural cut elimination
[Pfe00]. The first two parts of Theorem 3.6 are the home of the principal cases that decompose
both derivations simultaneously – part 1 is for positive cut formulas and part 2 is for negative cut
formulas. The third part contains all the left commutative cases that perform case analysis and
induction only on the first given derivation, and the fourth part contains all the right commutative
cases that perform case analysis and induction only on the second given derivation.

In Pfenning’s work on structural cut elimination, this classification of cases was informal, but
the structure of our cut admissibility proofs actually isolates the principal, left commutative, and
right commutative cases into different parts of the theorem [Pfe00]. This separation of cases is
the reason why cut admissibility in a focused sequent calculus can use a more refined induction
metric than cut admissibility in an unfocused sequent calculus. As noted previously in the proof
of Theorem 2.4, the refined induction metric does away with the precondition, essential to struc-
tural cut admissibility, that weakening and variable substitution preserve the size of derivations.

Before discussing the proof, it is worth noting that this theorem statement is already a sort of
victory. It is an extremely simple statement of cut admissibility for a rather complex logic.

3.4.1 Optimizing the statement of cut admissibility
We will pick the cut admissibility proof from Chaudhuri’s dissertation [Cha06] as a represen-
tative example of existing work on cut admissibility in focused logics. His statement of cut
admissibility for linear logic has 10 parts, which are sorted into five groups. In order to extend
his proof structure to handle the extra lax and mobile connectives in OL3, we would need a
dramatically larger number of cases. Furthermore, at a computational level, Chaudhuri’s proof
requires a lot of code duplication – that is, the proof of two different parts may both require a
case that looks essentially the same.

The structural focalization development in this chapter gives a compact proof of the com-
pleteness of focusing that is entirely free of code duplication. A great deal of simplification is
due to the use of the matching constructs Θ{{∆�lvl}} and U�lvl . Without that notation, part 3
would split into two parts for true and lax and part 4 would split into three parts for ord , eph,
and pers . The fifth part of the cut admissibility theorem in Section 2.3.6 (Theorem 2.4), which
is computationally a near-duplicate of the fourth part of the same theorem, is due to the lack of
this device.

Further simplification is due to defining right-focused, inverting, and left-focused sequents as
refinements of general sequents Ψ; ∆ ` U . Without this approach, the statement of part 3 must
be split into two parts (for substituting into terms and spines) and the statement of part 4 must be
split in parts (for substituting into values, terms, spines). Without either of the aforementioned
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simplifications, we would have 15 parts in the statement of Theorem 3.6 instead of four and twice
as many cases that needed to be written down and checked.

Picking a fixed inversion strategy prevents us from having to prove the tedious, quadratically
large confluence theorem discussed for linear logic in Section 2.3.8. This confluence theorem
is certainly true, and we might want to prove it for any number of reasons, but it is interesting
that we can avoid it altogether in our current development. A final improvement in our theorem
statement is very subtle: insofar as our goal is to give a short proof of the completeness of
focusing that avoids redundancy, the particular fixed inversion strategy we choose matters. The
proof of Theorem 2.4 duplicates many right commutative cases in both part 1 and part 4 (which
map directly onto parts 1 and 4 of Theorem 3.6 above). Our system prioritizes the inversion of
positive formulas on the left over the inversion of negative formulas on the right. If we made
the opposite choice, as Chaudhuri’s system does, then this issue would remain, resulting in code
duplication. We get a lot of mileage out of the fact that if Ξ = Θ{A+} then A+ unambiguously
refers to the left-most proposition in Ξ, and this invariant would no longer be possible to maintain
in the proof of cut admissibility if we prioritized inversion of negative propositions on the right.

3.4.2 Proof of cut admissibility, Theorem 3.6

The proof proceeds by lexicographic induction. In parts 1 and 2, the type gets smaller in every
call to the induction hypothesis. In part 3, the induction hypothesis is only ever invoked on the
same type A+, and every invocation of the induction hypothesis is either to part 1 (smaller part
number) or to part 3 (same part number, first derivation is smaller). Similarly, in part 4, the
induction hypothesis is only invoked at the same type A−, and every invocation of the induc-
tion hypothesis is either to part 2 (smaller part number) or to part 4 (same part number, second
derivation is smaller).

The remainder of this section will cover each of the four parts of this proof in turn. Most of the
theorem will be presented at the level of proof terms, but for representative cases we will discuss
what the manipulation of proof terms means in terms of sequents and matching constructs. The
computational content of parts 1 and 2 is principal substitution, written as (V ◦N)A

+ and (N ◦
Sp)A

− respectively, the computational content of part 3 is leftist substitution, written as JEKA+
N ,

and the computational content of part 4 is rightist substitution, written as JM/xKA−E.
In many cases, we discuss the necessity of constructing certain contexts or frames; in gen-

eral, we will state the necessary properties of these constructions without detailing the relatively
straightforward process of constructing them.

Positive principal substitution

Positive principal substitution encompasses half the principal cuts from Pfenning’s structural
cut admissibility proof – the principal cuts where the principal cut formula is positive. The
constructive content of this part is a function (V ◦N)A

+ that normalizes a value against a term.
Induction is on the structure of the positive type. The admissible rule associated with principal
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positive substitution is cut+.

Ψ; ∆ ` V : [A+] Ψ; Θ{A+} ` N : U

Ψ; Θ{{∆}} ` (V ◦N)A
+

: U
cut+

We have to be careful, especially in the positive principal substitution associated with the type
A+ •B+, to maintain the invariant that, in an unstable context, we only ever consider the leftmost
inverting positive proposition.

In most of these cases, one of the givens is that Θ{A+} matches Θ′{{A+}} for some Θ′.
Because this implies that Θ = Θ′, we take the equality for granted rather than mentioning and
reasoning explicitly about the premise every time.

– (z ◦ 〈z′〉.N1)p
+
lvl = [z/z′]N1

We must show Ψ; Ξ ` U , where

∆ matches z:〈p+
lvl〉,

N1 is a derivation of Ψ; Θ{z′:〈p+
lvl〉 lvl} ` U ,

and Ξ matches Θ{{∆}}.
Because ∆ is suspension-normal, we can derive Ψ; ∆ ` [p+

lvl ] by id+, and Ξ matches
Θ{{∆�lvl}}. Therefore, the result follows by focal substitution on z and N1.

– (↓M ◦ ↓x.N1)↓A
−

= JM/xKA−N1

– (¡M ◦ ¡x.N1)¡A− = JM/xKA−N1

– (!M ◦ !x.N1)!A− = JM/xKA−N1

We must show Ψ; Ξ ` U , where

∆ matches ∆�pers , M is derivation of Ψ; ∆ ` A−,

N1 is a derivation of Ψ; Θ{x:A− pers} ` U ,

and Ξ matches Θ{{∆}}.
Ξ matches Θ{{∆�pers}} and ∆ is stable (it was in a focused sequent Ψ; ∆ ` !M : [!A−]), so
the result follows by part 4 of cut admissibility on N1 and M .

– (() ◦ ().N1)1 = N1

– ((V1 • V2) ◦ (•N1))A
+•B+

= (V2 ◦ (V1 ◦N1)A
+

)B
+

We must show Ψ; Ξ ` U , where

∆ matches ∆1,∆2,
V1 is a derivation of Ψ; ∆1 ` [A+], V2 is a derivation of Ψ; ∆2 ` [B+],

N1 is a derivation of Ψ; Θ{A+, B+} ` U ,

and Ξ matches Θ{{∆}}.
We can to construct a frame ΘB such that Θ{A+, B+} = ΘB{A+}; we’re just exchanging
the part in the frame with the part not in the frame. We can also construct a second frame,
ΘA, such that 1) Ξ matches ΘA{{∆2}} and 2) ΘA{B+} matches ΘB{{∆1}}.
Because ΘA{B+} matches ΘB{{∆1}}, by the induction hypothesis on V1 and N1 we have
(V1 ◦N1)A

+ , a derivation of Ψ; ΘA{B+} ` U .
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Because Ξ matches ΘA{{∆2}}, by the induction hypothesis on V2 and (V1 ◦N1)A
+ , we have

a derivation of Ψ; Ξ ` U as required.

– (INL(V1) ◦ [N1, N2])A
+⊕B+

= (V1 ◦N1)A
+

– (INR(V2) ◦ [N1, N2])A
+⊕B+

= (V2 ◦N2)B
+

– (t, V1 ◦ a.N1)∃a:τ.A+
= (V1 ◦ [t/a]N1)[t/a]A+

We must show Ψ; Ξ ` U , where

Ψ ` t : τ , V1 is a derivation of Ψ; ∆ ` [[t/a]A+],

N1 is a derivation of Ψ, a:τ ; Θ{A+} ` U ,

and Ξ matches Θ{{∆}}.
By variable substitution on [t/a] andN1, we have a derivation [t/a]N1 of Ψ; Θ{[t/a]A+} `
U . We count [t/a]A+ as being a smaller formula than ∃a:τ.A+, so by the induction hy-
pothesis on V1 and [t/a]N1, we get a derivation of Ψ; Ξ ` U as required.

– (REFL ◦ UNIF (fnσ ⇒ φ(σ)))t
.
=t = φ(id)

We must show Ψ; Ξ ` U , where

∆ matches ·,
φ is a function from substitutions Ψ′ ` σ : Ψ that unify t and t to derivations of
Ψ; Θ{·} ` U ,

and Ξ matches Θ{{∆}}.
We simply apply the identity substitution to φ to obtain a derivation of Ψ; Θ{·} ` U . Note
that this is not quite the derivation of Ψ; Ξ ` U that we need; we need an exchange-like
lemma that, given a derivation of Ψ; Θ{·} ` U and the fact that Ξ matches Θ{{·}}, we can
get a proof of Ψ; Ξ ` U as we require.

Negative principal substitution

Negative principal substitution encompass all the principal cuts from Pfenning’s structural cut
admissibility proof for which the principal formula is negative. The constructive content of this
part is a function (N ◦ Sp)A

− that normalizes a term against a spine; a similar function appears
as hereditary reduction in presentations of hereditary substitution for LF [WCPW02]. Induction
is on the structure of the negative type. The admissible rule associated with negative principal
substitution is cut−:

Ψ; ∆ ` N : A− Ψ; Θ{[A−]} ` Sp : U ∆ stableL

Ψ; Θ{{∆}} ` (N ◦ Sp)A
−

: U
cut−

– (〈N〉 ◦ NIL)p
−
lvl = N

We must show Ψ; Ξ ` U , where

N is a derivation of Ψ; ∆ ` 〈p−lvl〉 lvl

Θ{[p−lvl ]} matches [p−lvl ], U = 〈p−lvl〉 lvl ′,
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and Ξ matches Θ{{∆}}.
Because U is suspension-normal, lvl = lvl ′. A derivation of Ψ; ∆ ` 〈p−lvl〉 lvl is not quite a
proof of Ψ; Ξ ` U , so we need an exchange-like lemma that we can get one from the other.

– (↑N ◦ ↑M)↑A
+

= JNKA+
M

– ({N} ◦ {M})#A+
= JNKA+

M

We must show Ψ; Ξ ` U , where

N is a derivation of Ψ; ∆ ` A+ lax ,

Θ{#A+} matches Θ′{{#A+}}, U�lax , Θ′ and U are stable, M is a derivation of
Ψ; Θ′{A+} ` U ,

and Ξ matches Θ{{∆}}.
Ξ matches Θ′{{∆}}, so the result follows by part 3 of cut admissibility on N and M .

– ((λ<N) ◦ (V <Sp))A
+�B− = ((V ◦N)A

+ ◦ Sp)B
−

– ((λ>N) ◦ (V >Sp))A
+�B− = ((V ◦N)A

+ ◦ Sp)B
−

We must show Ψ; Ξ ` U , where

N is a derivation of Ψ; ∆, A+ ` B−, ∆ is stable (by the fixed inversion invariant –
we only invert on the right when there is no further inversion to do on the left),

Θ{[A+ � B−]} matches Θ′{{[A+ � B−],∆A}}, V is a derivation of Ψ; ∆A ` [A+],
Sp is a derivation of Ψ; Θ′{[B−]} ` U ,

and Ξ matches Θ{{∆}}.
We can simultaneously view the construction ∆, A+ as a frame Θ∆ such that Θ∆{A+} =
∆, A+. Note that this is only possible to do because ∆ is stable; if there were a non-
stable proposition in ∆, the fixed inversion invariant would not permit us to frame off the
right-most proposition A+.
We next construct a context ∆′A that matches Θ∆{{∆A}} (and also ∆,∆A viewed as a
matching construct), while simultaneously Ξ matches Θ′{{∆′A}}.
By the part 1 of cut admissibility on V andN , we have (V ◦N)A

+ , a derivation of Ψ; ∆′A `
B−, and the result then follows by the induction hypothesis on (V ◦N)A

+ and Sp.

– ((N1 NN2) ◦ (π1; Sp))A
−NB− = (N1 ◦ Sp)A

−

– ((N1 NN2) ◦ (π2; Sp))A
−NB− = (N2 ◦ Sp)A

−

– (([a].N) ◦ ([t]; Sp))∀a:τ.A− = ([t/a]N ◦ Sp)[t/a]A−

Leftist substitution

In focal substitution, the positive case corresponds to our usual intuitions about substitution and
the negative case is strange. In cut admissibility, the situation is reversed: rightist substitutions
(considered in Section 3.4.2 below), associated with negative principal cut formals, look like
normal substitutions, and the leftist substitutions, considered here, are strange, as they break
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apart the expression that proves A+ rather than the term where A+ appears in the context.
Leftist substitutions encompass all the left commutative cuts from Pfenning’s structural cut

admissibility proof. The constructive content of leftist substitution is a function JEKM ; we
say we are substituting M out of E. Induction is on the first subterm, as we crawl through E
looking for places where focus takes place on the right. The admissible rule associated with
leftist substitution is lcut :

Ψ; ∆ ` E : A+ lvl Ψ; Θ{A+} `M : U Θ stableL U stableR

Ψ; Θ{{∆}} ` JEKA+
M : U�lvl

lcut

Except for the case where the first given derivation ends in the rule focusR, every case of this
theorem involves a left rule. The general pattern for these cases is that Ξ matches Θ{{∆}} and
∆ matches ΘB{{x:T ord}}. Θ and ΘB have the same persistent variables but distinct ephemeral
and ordered variables, and we must construct a frame Θ◦ΘB that is effectively the composition
of Θ and ΘB. In cases that we discuss in detail, necessary properties of this composition frame
are stated but not proven.

Substitution out of terms
– JV KA+

M = (V ◦M)A
+

We must show Ψ; Ξ ` U , where

V is a derivation of Ψ; ∆ ` [A+],

M is a derivation of Ψ; Θ{A+} ` U ,

Ξ matches Θ{{∆}}, and U�lvl

The result follows from part 1 of cut admissibility on V and M .

– Jx · SpKA+
M = x · (JSpKA+

M)

We must show Ψ; Ξ ` U , where

∆ matches ΘB{{x:B−}}, Sp is a derivation of Ψ; ΘB{[B−]} ` A+ lvl ,

M is a derivation of Ψ; Θ{A+} ` U ,

Ξ matches Θ{{∆}}, and U�lvl .

Ξ matches (Θ◦ΘB){{x:B−}} and (Θ◦ΘB){[B−]} matches Θ′{{ΘB{[B−]}}}. By the induc-
tion hypothesis on Sp andM we have Ψ; (Θ◦ΘB){[B−]} ` U , and the required result then
follows from rule focusL.

– J〈z〉.NKA+
M = 〈z〉.(JNKA+

M)

– J↓x.NKA+
M = ↓x.(JNKA+

M)

– J¡x.NKA+
M = ¡x.(JNKA+

M)

– J!x.NKA+
M = !x.(JNKA+

M)

We must show Ψ; Ξ ` U , where

∆ matches ΘB{{!B−}}, N is a derivation of Ψ; ΘB{x:B− pers} ` A+ lvl ,

M is a derivation of Ψ; Θ{A+} ` U ,
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Ξ matches Θ{{∆}}, and U�lvl .

We can construct a Θ′ such that Θ′{A+} = (Θ{A+}, x:B− pers). By admissible weaken-
ing, M is a derivation of Ψ; Θ′{A+} ` U , too.
Ξ matches (Θ◦ΘB){{!B−}} and (Θ◦ΘB){x:B− pers} matches Θ′{{ΘB{x:B− pers}}}. By
the induction hypothesis on N and M we have Ψ; (Θ◦ΘB){x:B− pers} ` U , and the
required result then follows from rule !L.

– J•NKA+
M = •(JNKA+

M)

– JABORTKA+
M = ABORT

– J[N1, N2]KA+
M = [(JN1KA

+
M), (JN2KA

+
M)]

– Ja.NKA+
M = a.(JNKA+

M)

We must show Ψ; Ξ ` U , where

∆ matches ΘB{{∃a:τ.B+}}, N is a derivation of Ψ, a:τ ; ΘB{B+} ` A+,

M is a derivation of Ψ; Θ{A+} ` U ,

Ξ matches Θ{{∆}}, and U�lvl .

Ξ matches (Θ◦ΘB){{∃a:τ.B+}} and (Θ◦ΘB){B+} matches Θ{{ΘB{B+}}}. By variable
weakening (a special case of variable substitution),M is also a derivation of Ψ, a:τ ; Θ{A+} `
U , so by the induction hypothesis on N and M we have Ψ, a:τ ; (Θ◦ΘB){B+} ` U , and
the required result then follows from rule ∃L.

– JUNIF (fnσ ⇒ φ(σ))KA+
M = UNIF (fn σ ⇒ Jφ(σ)KσA+

(σM))

We must show Ψ; Ξ ` U , where

∆ matches ΘB{{t
.
= s}}, φ is a function from substitutions Ψ′ ` σ : Ψ that unify t

and s to derivations of Ψ′;σΘB{·} ` σA+,

M is a derivation of Ψ; Θ{A+} ` U ,

Ξ matches Θ{{∆}}, and U�lvl .

Ξ matches (Θ◦ΘB){{t .= s}}, and for any substitution σ, σU�lvl and σ(Θ◦ΘB){·} matches
σΘ{{σΘB{·}}}. By rule .

=L, it suffices to show that, given an arbitrary substitution Ψ′ `
σ : Ψ, there is a derivation of Ψ′;σ(Θ◦ΘB){·} ` σU .
By applying σ to φ, we get φ(σ), a derivation of Ψ′;σΘB{·} ` σA+. We treat σA+ as
having the same size as A+, and the usual interpretation of higher-order derivations is that
φ(σ) is a subderivation of φ, so φ(σ) can be used to invoke the induction hypothesis. From
variable substitution, we get σM , a derivation of Ψ′;σΘ{σA+} ` σU , and then the result
follows by the induction hypothesis on φ(σ) and σM .

Substitution out of spines
– J↑NKA+

M = ↑(JNKA+
M)

– J{N}KA+
M = {JNKA+

M}
We must show Ψ; Ξ ` U , where
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∆ matches ΘB{{#B+}}, (A+ lvl)�lax ,
N is a derivation of Ψ; ΘB{A+} ` UA
M is a derivation of Ψ; Θ{A+} ` U ,

Ξ matches Θ{{∆}}, and U ′ matches U�lvl .

Because (A+ lvl)�lax and U�lvl , we can conclude that U�lax .
Ξ matches (Θ◦ΘB){{#B+}} and (Θ◦ΘB){B+} matches Θ{{ΘB{B+}}}. By the induction
hypothesis on N and M we have Ψ; (Θ◦ΘB){B+} ` U , and the result follows by rule#L.

– JV <SpKA+
M = V <(JSpKA+

M)

– JV >SpKA+
M = V >(JSpKA+

M)

We must show Ψ; Ξ ` U , where

∆ matches ΘB{{[B+
1 � B−2 ],∆B}}, V is a derivation of Ψ; ∆B ` [B+

1 ],
Sp is a derivation of Ψ; ΘB{[B−2 ]} ` A+ lvl ,

M is a derivation of Ψ; Θ{A+} ` U ,

Ξ matches Θ{{∆}}, and U�lvl .

Ξ matches (Θ◦ΘB){{[B+
1 � B−2 ],∆B}} and (Θ◦ΘB){[B−2 ]}matches Θ{{ΘB{[B−2 ]}}}. By

the induction hypothesis on Sp andM we have JSpKA+
M , a derivation of Ψ; (Θ◦ΘB){[B−2 ]} `

U . The required result follows by rule�L on V and JSpKA+
M .

– Jπ1; SpKA+
M = π1; (JSpKA+

M)

– Jπ2; SpKA+
M = π2; (JSpKA+

M)

– J[t]; SpKA+
M = [t]; (JSpKA+

M)

Rightist substitution

Rightist substitutions encompass all the right commutative cuts from Pfenning’s structural cut
admissibility proof. The constructive content of this part is a function JM/xKA−E; we say we
are substituting M into E. Induction is on the second subterm, as we crawl through E looking
for places where x is mentioned. The admissible rule associated with rightist substitution is rcut :

Ψ; ∆ `M : A− Ψ; Θ{x:A− lvl} ` E : U ∆ stableL

Ψ; Θ{{∆�lvl}} ` JM/xKA−E : U
rcut

A unique aspect of the right commutative cuts is that the implicit bookkeeping on contexts
matters to the computational behavior of the proof: when we deal with multiplicative connectives
likeA+•B+ andA+ � B+ under focus, we actually must consider that the variable x that we’re
substituting for can end up in only one specific branch of the proof (if x is associated with a
judgment A− ord or A− eph) or in both branches of the proof (if x is associated with a judgment
x:A− pers). The computational representation of these cases looks nondeterministic, but it is
actually determined by the annotations and bookkeeping that we don’t write down as part of the
proof term. This is a point that we return to in Section 3.8.
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For cases involving left rules, the general pattern is that Ξ matches Θ{{∆�lvl}} and the action
of the left rule, when we read it bottom-up, is observe that Θ{x:A− lvl} matches Θ′{{y:T ord}}
in its conclusion and constructs Θ′{{y:T ′ lvl ′}} in its premise(s). Effectively, we need to abstract
a two-hole function (call it Γ) from Ξ. One hole – the place where x is – is defined by the
frame Θ: morally, Θ = λ∆B.Γ(x:A− lvl)(∆B). The other hole – the place where y is – is
defined by Θ′: morally, Θ′ = λ∆A.Γ(∆A)(y:T ord). However, we cannot directly represent
these functions due to the need to operate around matching constructs. Instead, we construct
Θ∆ to represent the frame that is morally λ∆B.Γ(∆)(∆B), and ΘT ′ to represent the frame that is
morally λ∆A.Γ(∆A)(y:T ′ lvl ′). As before, in cases that we discuss in detail, necessary properties
of these two frames are stated but not proven.

Substitution into values
– JM/xKA−z = z

– JM/xKA−(↓N) = ↓(JM/xKA−N)

– JM/xKA−(¡N) = ¡(JM/xKA−N)

– JM/xKA−(!N) = !(JM/xKA−N)

We must show Ψ; Ξ ` [!B−], where

M is a derivation of Ψ; ∆ ` A−,

Θ{x:A− lvl} matches ∆′�pers , N is a derivation of Ψ; ∆′ ` B−,

and Ξ matches Θ{{∆�lvl}}.
Because Θ{x:A− lvl} matches ∆′�pers and Ξ matches Θ{{∆�lvl}}, we can conclude that
there exists a Θ′ such that ∆′ = Θ′{x:A− lvl} and also that Ξ matches Ξ�pers .
By the induction hypothesis on M and N , we have a derivation of Ψ; Ξ ` B−, and the
result follows by rule !R.

– JM/xKA−() = ()

We must show Ψ; Ξ ` [1], where

M is a derivation of Ψ; ∆ ` A−,

Θ{x:A− lvl} matches ·,
and Ξ matches Θ{{∆�lvl}}.

Because Θ{x:A− lvl} matches ·, it must be the case that lvl = pers , and so Ξ matches · as
well. The result follows by rule 1R.

– JM/xKA−(V1 • V2) =

(JM/xKA−V1) • V2 (if x is in V1’s context but not V2’s)
V1 • (JM/xKA−V2) (if x is in V2’s context but not V1’s)
(JM/xKA−V1) • (JM/xKA−V2) (if x is in both V1 and V2’s contexts)

We must show Ψ; Ξ ` [B+
1 •B+

2 ], where

M is a derivation of Ψ; ∆ ` A−,
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Θ{x:A− lvl} matches ∆1,∆2, V1 is a derivation of Ψ; ∆1 ` B+
1 ,

V2 is a derivation of Ψ; ∆2 ` B+
2 ,

and Ξ matches Θ{{∆�lvl}}.
There are three possibilities: either x is a variable declaration in ∆1 or ∆2 but not both (if
lvl is eph or ord ) or x is a variable declaration in both ∆1 and ∆2 (if lvl is pers).
The first two cases are symmetric; assume without loss of generality that x is a variable
declaration in ∆1 but not ∆2; we can construct a Θ1 and ∆′1 such that Θ1{x:A− lvl} = ∆1,
∆′1 matches Θ1{{∆1�lvl}}, and Ξ matches ∆′1,∆2 By the induction hypothesis on M and
V1, we have JM/xKA−V1, a derivation of Ψ; ∆′1 ` [B+

1 ], and the result follows by rule •R
on JM/xKA−V1 and V2.
The third case is similar; we construct a Θ1, ∆′1, Θ2, and ∆′2 such that Θ1{x:A− lvl} = ∆1,
Θ2{x:A− lvl} = ∆2, ∆′1 matches Θ1{{∆1�lvl}}, ∆′2 matches Θ1{{∆2�lvl}}, and Ξ matches
∆′1,∆

′
2, which is only possible because lvl = pers; we then invoke the induction hypothe-

sis twice.

– JM/xKA−(INL(V )) = INL(JM/xKA−V )

– JM/xKA−(INR(V )) = INR(JM/xKA−V )

– JM/xKA−(t, V ) = t, (JM/xKA−V )

– JM/xKA−REFL = REFL

Substitution into terms
– JM/xKA−V = JM/xKA−V
– JM/xKA−(y · Sp) = y · (JM/xKA−Sp) (x#y)

– JM/xKA−(x · Sp) =
(M ◦ Sp)A

−
(if x is not in Sp’s context)

(M ◦ (JM/xKA−Sp))A
−

(if x is in Sp’s context)

We must show Ψ; Ξ ` U , where

M is a derivation of Ψ; ∆ ` A−,

Θ{x:A− lvl} matches Θ′{{x:A−}}, Sp is a derivation of Ψ; Θ′{[A−]} ` U ,

and Ξ matches Θ{{∆�lvl}}.
If lvl is eph or ord , then Ξ matches Θ′{{∆}}, and the result follows by part 1 of cut admis-
sibility on M and Sp.
If lvl is pers , Ξ doesn’t match Θ′{{∆}}, since Θ′ has an extra variable declaration x:A− pers .
Instead, we have that Θ{[A−]}matches Θ[A−]{{∆�pers}} and Θ[A−]{x:A− pers} = Θ′{[A−]},
so Sp is also a derivation of Ψ; Θ[A−]{x:A− pers} ` U . By the induction hypothesis on M
and Sp, we have JM/xKA−Sp, a derivation of Ψ; Θ{[A−]} ` U . Then, because Ξ matches
Θ{{∆}}, the result follows from part 1 of cut admissibility on M and JM/xKA−Sp.

– JM/xKA−(〈z〉.N) = 〈z〉.(JM/xKA−N)

– JM/xKA−〈N〉 = 〈JM/xKA−N〉

83



October 15, 2012
DRAFT

– JM/xKA−(↓y.N) = ↓y.(JM/xKA−N)

– JM/xKA−(¡y.N) = ¡y.(JM/xKA−N)

– JM/xKA−(!y.N) = !y.(JM/xKA−N)

We must show Ψ; Ξ ` U , where

M is a derivation of Ψ; ∆ ` A−,

Θ{x:A− lvl} matches Θ′{{!B−}}, N is a derivation of Ψ; Θ′{y:B− pers} ` U ,

and Ξ matches Θ{{∆�lvl}}.
Let ∆′ = ∆, y:B− pers . By admissible weakening, M is derivation of Ψ; ∆′ ` A− too.
Ξ matches Θ∆{{!B−}}, Θ∆{y:B− pers} matches ΘB−{{∆′�lvl}}, and ΘB−{x:A− lvl} =
Θ′{y:B− pers}. By the induction hypothesis on M and N we have Ψ; Θ∆{y:B− pers} `
U , and the result follows by rule !L.

– JM/xKA−(↑N) = ↑(JM/xKA−N)

– JM/xKA−{N} = {JM/xKA−N}
– JM/xKA−•N = •(JM/xKA−N)

– JM/xKA−λ<N = λ<(JM/xKA−N)

– JM/xKA−λ>N = λ>(JM/xKA−N)

– JM/xKA−ABORT = ABORT

– JM/xKA− [N1, N2] = [JM/xKA−N1, JM/xKA−N2]

We must show Ψ; Ξ ` U , where

M is a derivation of Ψ; ∆ ` A−,

Θ{x:A− lvl} matches Θ′{{B+
1 ⊕B+

2 }}, N1 is a derivation of Ψ; Θ′{B+
1 } ` U ,

N2 is a derivation of Ψ; Θ′{B+
2 } ` U ,

and Ξ matches Θ{{∆�lvl}}.
Ξ matches Θ∆{{B+

1 ⊕B+
2 }}, and for i ∈ {1, 2}, Θ∆{B+

i } matches ΘB+
i
{{∆�pers}} and

ΘB+
i
{x:A− lvl} = Θ′{B+

i }.
By the induction hypothesis on M and N1, we have Ψ; Θ∆{B+

1 } ` U , by the induction
hypothesis on M and N2, we have Ψ; Θ∆{B+

2 } ` U , and the result follows by rule ⊕L.

– JM/xKA−> = >
– JM/xKA−(N1 NN2) = (JM/xKA−N1) N (JM/xKA−N2)

– JM/xKA−a.N = a.(JM/xKA−N)

– JM/xKA− [a].N = [a].(JM/xKA−N)

– JM/xKA−UNIF (fnσ ⇒ φ(σ)) = UNIF (fn σ ⇒ JσM/xKA−φ(σ))

We must show Ψ; Ξ ` U , where

M is a derivation of Ψ; ∆ ` A−,

Θ{x:A− lvl} matches Θ′{{t .= s}}, φ is a function from substitutions Ψ′ ` σ : Ψ that

84



October 15, 2012
DRAFT

unify t and s to derivations of Ψ′;σΘ′{·} ` σU .

and Ξ matches Θ{{∆�lvl}}.
Ξ matches Θ∆{{t

.
= s}}, and for any substitution σ, σΘ∆{·} matches σΘ{{∆�lvl}}. By rule

.
=L, it suffices to show that, given an arbitrary substitution Ψ′ ` σ : Ψ, there is a derivation
of Ψ′;σΘ∆{·} ` σU .
By applying σ to φ, we get φ(σ), a derivation of Ψ′;σΘB{·} ` σA+; the usual interpre-
tation of higher-order derivations is that φ(σ) is a subderivation of φ, so φ(σ) can be used
to invoke the induction hypothesis. From variable substitution, we get σM , a derivation of
Ψ′;σ∆ ` σA− lvl , and the result follows by the induction hypothesis on σM and φ(σ).

Substitution into spines
– JM/xKA−NIL = NIL

– JM/xKA−(↑N) = ↑(JM/xKA−N)

– JM/xKA−{N} = {JM/xKA−N}
– JM/xKA−V <Sp =

(JM/xKA−V )<Sp (if x is in V ’s context but not Sp’s)
V <(JM/xKA−Sp) (if x is in Sp’s context but not V ’s)
(JM/xKA−V )<(JM/xKA−Sp) (if x is in both V and Sp’s contexts)

– JM/xKA−V >Sp =
(JM/xKA−V )>Sp (if x is in V ’s context but not Sp’s)
V >(JM/xKA−Sp) (if x is in Sp’s context but not V ’s)
(JM/xKA−V )>(JM/xKA−Sp) (if x is in both V and Sp’s contexts)

We must show Ψ; Ξ ` ∀x:τ.B−, where

M is a derivation of Ψ; ∆ ` A−,

Θ{x:A− lvl} matches Θ′{{[B+
1 � B−2 ],∆A}}, V is a derivation of Ψ; ∆A ` [B+

1 ],
Sp is a derivation of Ψ; Θ′{[B−2 ]} ` U ,

and Ξ matches Θ{{∆�lvl}}.
There are three possibilities: either x is a variable declaration in Θ′ or ∆A but not both (if
lvl is eph or ord ) or x is a variable declaration in both Θ′ and ∆A (if lvl is pers).
In the first case (x is a variable declaration in ∆A only), Ξ matches Θ′{{[B+

1 � B−2 ],∆′A}},
∆′A matches ΘA{{∆�lvl}}, and ∆A = ΘA{x:A− lvl}. By the induction hypothesis on M
and V we have JM/xKA−V , a derivation of Ψ; ∆′A ` [B+

1 ], and the result follows by rule
�L on JM/xKA−V and Sp.
In the second case (x is a variable declaration in Θ′ only), Ξ matches Θ∆{{[B+

1 � B−2 ],∆A}},
Θ∆{[B−2 ]} matches Θ[B−2 ]{{∆�lvl}}, and Θ[B−2 ]{x:lvl} = Θ′{[B−2 ]}. By the induction hy-
pothesis on M and Sp, we have JM/xKA−Sp, a derivation of Ψ; Θ∆{[B−2 ]} ` U , and the
result follows by rule�L on V and JM/xKA−Sp.
In the third case (x is a variable declaration in Θ′ and ∆A), Ξ matches Θ∆{{[B+

1 � B−2 ],∆′A}},
where Θ∆ and ∆′A have the same properties as before, and we proceed invoking the induc-
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tion hypothesis twice.

– JM/xKA−π1; Sp = π1; (JM/xKA−Sp)

– JM/xKA−π2; Sp = π2; (JM/xKA−Sp)

– JM/xKA− [t]; Sp = [t]; (JM/xKA−Sp)

3.5 Identity expansion
The form of the identity expansion theorems is already available to us: the admissible rules ηA+

lvl

and ηA−lvl are straightforward generalizations of the explicit rules η+ and η− in Figure 3.5 from
ordered atomic propositions p+ and p− to arbitrary propositions and from permeable atomic
propositions p+

eph , p+
pers , and p−lax to arbitrary permeable propositions A+

eph , A+
pers and A−lax . The

content of Theorem 3.7 below is captured by the two admissible rules ηA+
lvl

and ηA−lvl and also by
the two functions and ηA+

lvl
(z.N) and ηA−lvl (N) that operate on proof terms.

Ψ; Θ{z:〈A+
lvl〉 lvl} ` N : U

Ψ; Θ{{A+
lvl}} ` ηA+

lvl
(z.N) : U

ηA+
lvl

Ψ; ∆ ` N : 〈A−lvl〉 lvl ∆ stableL

Ψ; ∆ ` ηA−lvl (N) : A−lvl

ηA−lvl

Identity expansion is not the perhaps not the best name for the property; the name comes
from the fact that the usual identity properties are a corollary of identity expansion. Specifically,
ηA+(z.z) is a derivation of Ψ;A+ ` A+ true and ηA−(x · NIL) is a derivation of Ψ;x:A− ord `
A−.

In the proof of identity expansion, we do pay some price in return for including permeable
propositions, as we perform slightly different bookkeeping depending on whether or not it is
necessary to apply admissible weakening to the subderivation N . However, this cost is mostly
borne by the part of the context we leave implicit.

Theorem 3.7 (Identity expansion).
∗ If Ψ; Θ{z:〈A+

lvl〉 lvl} ` U and ∆ matches Θ{{A+
lvl}}, then Ψ; ∆ ` U .

∗ If Ψ; ∆ ` 〈A−lvl〉 lvl and ∆ is stable, then Ψ; ∆ ` A−lvl .

Proof. By mutual induction over the structure of types. We provide the full definition at the level
of proof terms and include an extra explanatory derivation for a few of the positive cases.

Positive cases

– ηp+
lvl

(z.N) = 〈z〉.N

N is a derivation of Ψ; Θ{z:p+
lvl lvl} ` U ; the result follows immediately by the rule η+:

Ψ; Θ{z:p+
lvl lvl} ` N : U

Ψ; Θ{{p+
lvl}} ` 〈z〉.N : U

η+
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– η↓A−(z.N) = ↓x.([(↓(ηA−(x · NIL)))/z]N)

N is a derivation of Ψ; Θ{z:〈↓A−〉 ord} ` U . We construct a context Ξ that contains only
the persistent propositions from ∆. This means that Θ{{Ξ, x:A− ord}}matches Θ{x:A− ord}.
We can then derive:

Ψ; Ξ, [A−] ` NIL : 〈A−〉 true id−

Ψ; Ξ, x:A− ord ` x · NIL : 〈A−〉 true
focusL

Ψ; Ξ, x:A− ord ` ηA−(x · NIL) : A− true
ηA−

Ψ; Ξ, x:A− ord ` ↓(ηA−(x · NIL)) : [↓A−]
↓R

Ψ; Θ{z:〈↓A−〉 ord} ` N : U

Ψ; Θ{x:A− ord} ` [(↓(ηA−(x · NIL)))/z]N : U
subst+

Ψ; Θ{{↓A−}} ` ↓x.([(↓(ηA−(x · NIL)))/z]N) : U
↓L

– η¡A−(z.N) = ¡x.([(¡(ηA−(x · NIL)))/z]N)

– η!A−(z.N) = !x.([(!(ηA−(x · NIL)))/z]N)

N is a derivation of Ψ; Θ{z:〈!A−〉 lvl} ` U , where lvl can be anything (ord , eph, or pers).
We construct a context Ξ that contains only the persistent propositions from ∆ and a frame
Θ+ that is Θ plus an extra variable declaration x:A− pers . This means that Θ{x:A− pers}
matches Θ+{{(Ξ, x:A− pers)�lvl}}. We can then derive:

Ψ; Ξ, x:A− pers, [A−] ` NIL : 〈A−〉 true id−

Ψ; Ξ, x:A− pers ` x · NIL : 〈A−〉 true
focusL

Ψ; Ξ, x:A− pers ` ηA−(x · NIL) : A− true
ηA−

Ψ; Ξ, x:A− pers ` !(ηA−(x · NIL)) : [!A−]
!R

Ψ; Θ{z:〈↓A−〉 lvl} ` N : U

Ψ; Θ+{z:〈↓A−〉 lvl} ` N : U
weaken

Ψ; Θ{x:A− pers} ` [(!(ηA−(x · NIL)))/z]N : U
subst+

Ψ; Θ{{!A−}} ` !x.([(!(ηA−(x · NIL)))/z]N) : U
!L

– η1(z.N) = ().([()/z]N)

– ηA+
lvl•B

+
lvl

(z.N) = •
(
ηA+

lvl
(z1. ηB+

lvl
(z2. [(z1 • z2)/z]N))

)
N is a derivation of Ψ; Θ{z:〈A+

lvl •B
+
lvl〉 lvl} ` U , where lvl can be anything (ord , eph, or

pers). We construct a context Ξ that contains only the persistent propositions from ∆ and a
frame Θ+ that is either Θ (if lvl is ord or eph) or it is Θ plus additional variable declarations
z1:〈A+

lvl〉 lvl and z2:〈B+
lvl〉 lvl (if lvl is pers). This means that Θ{x1:〈A+

lvl〉 lvl , x2:〈B+
lvl〉 lvl}

matches Θ+{{(Ξ, x1:〈A+
lvl〉 lvl , x2:〈B+

lvl〉 lvl)�lvl}}. We can then derive:

Ψ; Ξ1 ` z1 : [A+
lvl ]

id+

Ψ; Ξ2 ` z2 : [B+
lvl ]

id+

Ψ; Ξ, z1:〈A+
lvl〉 lvl , z2:〈B+

lvl〉 lvl ` z1 • z2 : [A+
lvl •B

+
lvl ]
•R

Ψ; Θ{z:〈A+
lvl •B

+
lvl〉 lvl} ` N : U

Ψ; Θ+{z:〈A+
lvl •B

+
lvl〉 lvl} ` N : U

weaken

Ψ; Θ{z1:〈A+
lvl〉 lvl , z2:〈B+

lvl〉 lvl} ` [(z1 • z2)/z]N : U
subst+

Ψ; Θ{z1:〈A+
lvl〉 lvl , B

+
lvl} ` ηB+

lvl
(z2. [(z1 • z2)/z]N) : U

ηB+
lvl

Ψ; Θ{A+
lvl , B

+
lvl} ` ηA+

lvl
(z1. ηB+

lvl
(z2. [(z1 • z2)/z]N)) : U

ηA+
lvl

Ψ; Θ{{A+
lvl •B

+
lvl}} ` •(ηA+

lvl
(z1. ηB+

lvl
(z2. [(z1 • z2)/z]N))) : U

•L

Either Ξ1 and Ξ2 are both Ξ, z1:〈A+
lvl〉 lvl , z2:〈B+

lvl〉 lvl (if lvl is pers), or Ξ1 is Ξ, z1:〈A+
lvl〉 lvl

and Ξ2 is Ξ, z2:〈B+
lvl〉 lvl (if lvl is ord or eph).
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– η0(z.N) = ABORT

– ηA+
lvl⊕B

+
lvl

(z.N) = [ηA+
lvl

(z1. [INL(z1)/z]N), ηB+
lvl

(z2. [INR(z2)/z]N)]

– η∃a:τ.A+
lvl

(z.N) = a.ηA+(z′. [(a, z′)/z]N)

– ηt .=τ s(z.N) = UNIF (fn σ ⇒ [REFL/z](σN))

Negative cases

– ηp−lvl
(N) = 〈N〉

– η↑A+(N) = ↑([N ](↑(ηA+(z.z))))

– η#A+(N) = {[N ]({ηA+(z.z)})}
– ηA+�B−lvl

(N) = λ<(ηA+(z. ηB−lvl
([N ](z<NIL))))

– ηA+�B−lvl
(N) = λ>(ηA+(z. ηB−lvl

([N ](z>NIL))))

– η>(N) = >
– ηA−lvlNB

−
lvl

(N) = (ηA−lvl
([N ](π1; NIL))) N (ηB−lvl

([N ](π2; NIL)))

– η∀a:τ.A−lvl
(N) = [a].(ηA−lvl

([N ]([a]; NIL)))

3.6 Correctness of focusing
Our proof of the correctness of focusing is based on erasure as described in Section 2.3.7. The
argument follows the one from the structural focalization development, and the key component
is the set of unfocused admissibility lemmas, lemmas that establish that each of the reasoning
steps that can be made in unfocused OL3 are admissible inferences made on stable sequents in
focused OL3.

3.6.1 Erasure
As in Section 2.3.7, we define erasure only on stable, suspension-normal sequents. Erasure
for propositions is defined as in Figure 3.8. As discussed in Section 2.5.4, even though we
have not incorporated a notion of permeable and mobile atomic propositions into the unfocused
presentation of OL3, it is possible to erase a permeable atomic proposition p+

pers as !p+
pers .

3 In
this way, we can see the separation criteria from our previous work [SP08, PS09] arising as an
emergent property of erasure.

We have to define erasure on non-stable sequents in order for the soundness of focusing to
go through, though we will only define erasure on suspension-normal sequents. The erasure of
sequents, U◦, maps polarized succedents A+ lvl , 〈p−lvl〉 lvl , [A+], and A− in the obvious way to
unpolarized succedents (A+)◦ lvl , p−lvl lvl , (A+)◦ ord , and (A−)◦ ord , respectively. To describe
the erasure of contexts more simply, we will assume that we can give a presentation of unfocused

3The polarity and level annotations are meaningless in the unfocused logic. We keep them only to emphasize
that p+

pers and p−lax do not erase to the same unpolarized atomic proposition p but two distinct unpolarized atomic
propositions.
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(A+)◦ (A−)◦

(p+)◦ = p+ (p−)◦ = p−

(p+
eph)◦ = ¡p+

eph (p−lax )◦ = #p−lax
(p+

pers)
◦ = !p+

pers

(↓A−)◦ = (A−)◦ (↑A+)◦ = (A+)◦

(¡A−)◦ = ¡(A−)◦ (#A+)◦ = #(A+)◦

(!A−)◦ = !(A−)◦

(1)◦ = 1 (A+ � B−)◦ = (A+)◦� (B+)◦

(A+ •B+)◦ = (A+)◦ • (B+)◦ (A+ � B−)◦ = (A+)◦ � (B−)◦

(0)◦ = 0 (>)◦ = >
(A+ ⊕B+)◦ = (A+)◦ ⊕ (B+)◦ (A− NB−)◦ = (A−)◦ N (B−)◦

(∃a:τ.A+)◦ = ∃a:τ.(A+)◦ (∀a:τ.A−)◦ = ∀a:τ.(A−)◦

(t
.
= s)◦ = t

.
= s

Figure 3.8: Erasure in OL3

OL3 that uses unified substructural contexts, as we outlined in Section 3.2; the judgments of
this presentation have the form Ψ; ∆ =⇒ U . In this presentation, we can define ∆◦ that takes
every variable declaration x:A− lvl , x:〈p+

lvl〉 lvl , [A−], orA+ to a variable declaration x:(A−)◦ lvl ,
x:p+

lvl lvl , x:(A−)◦ ord , or x:(A+)◦ ord (and in the process, either comes up with or reveals the
suppressed variable names associated with focused negative propositions and inverting positive
propositions). Erasure of succedents U◦ is similar: (A+ lvl)◦ = (A+)◦ lvl , (〈p−lvl〉 lvl)◦ = p−lvl lvl ,
([A−])◦ = (A−)◦ true, and (A+)◦ = (A+)◦ true.

3.6.2 De-focalization
The act of taking a focused proof of a sequent and getting an unfocused proof of the corre-
sponding erased sequent is de-focalization. If we run the constructive content of the proof of the
soundness of focusing (the OL3 analogue of Theorem 2.5 from Section 2.3.7), the proof performs
de-focalization.

Theorem 3.8 (Soundness of focusing/de-focalization). If Ψ; ∆ ` U , then Ψ; ∆◦ =⇒ U◦.

Proof. By induction over the structure of focused proofs. Most rules (•L, �R, etc.) in the
focused derivations have an obviously analogous rule in the unfocused logic, and for the four
rules dealing with shifts, the necessary result follows directly from the induction hypothesis. The
focusL rule potentially requires an instance of the admissible copy or place rules in unfocused
OL3, and the focusR rule potentially requires an instance of the admissible lax rule in unfocused
OL3.

3.6.3 Unfocused admissibility
Unfocused admissibility has a structure that is unchanged from the previous discussion in the
proof of the completeness of focusing for linear logic (Theorem 2.6 in Section 2.3.7). In this
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Atomic propositions

Ψ; z:〈p+
lvl 〉 ` z : p+

lvl lvl
′ Ψ;x:↑p+

lvl ` x · ↑〈z〉. z : p+
lvl lvl

′

Ψ;x:p−lvl ` x · NIL : 〈p−lvl 〉 lvl Ψ;x:p−lvl ` ↓〈x · NIL〉 : ↓p−lvl lvl

Exponentials
Ψ; ∆ ` N : A+ ord

Ψ; ∆ ` ↓↑N : ↓↑A+ lvl

Ψ; Θ{x′:A− ord} ` N : U

Ψ; Θ{{x:↑↓A−}} ` x · ↑↓x′.N : U

Ψ; ∆ ` N : ↓A− ord
Ψ; ∆�eph ` J↑N/xK↑↓A−¡ηA−(x · ↑↓x′. x′ · NIL) : ¡A− lvl

Ψ; Θ{x′:A− eph} ` N : U

Ψ; Θ{{x:↑¡A−}} ` x · ↑¡x′.N : U

Ψ; ∆ ` N : ↓A− ord
Ψ; ∆�pers ` J↑N/xK↑↓A− !ηA−(x · ↑↓x′. x′ · NIL) : !A− lvl

Ψ; Θ{x′:A− pers} ` N : U

Ψ; Θ{{x:↑!A−}} ` x · ↑!x′.N : U

Ψ; ∆ ` N : A+ lax

Ψ; ∆ ` ↓{N} : ↓#A+ lvl

Ψ; Θ{x′:↑A+ ord} ` N : U

Ψ; Θ{{x:#A+}} ` Jx · ηA+(z. ↓↑z)K↓↑A+↓x′.N : U�lax

Multiplicative connectives (� and� are symmetric)

Ψ; · ` () : 1 lvl

Ψ; Θ{·} ` N : U

Ψ; Θ{{x:↑1}} ` x · ↑().N : U

Ψ; ∆1 ` N1 : A+ ord Ψ; ∆2 ` N2 : B+ ord

Ψ; ∆1,∆2 ` J↑N1/x1K↑A
+

(JN2KB
+
ηB+(z2. x1 · ↑ηA+(z1. z1 • z2))) : A+ •B+ lvl

Ψ; Θ{x1:↑A+, x2:↑B+} ` N : U

Ψ; Θ{{x:↑(A+ •B+)}} ` x · ↑JηA+(z1. ηB+(z2. ↓↑z1 • ↓↑z2))K↓↑A+•↓↑B+•(↓x1.↓x2.N) : U

Ψ;x:↑A+ ord ,∆ ` N : ↓B− ord
Ψ; ∆ ` J(λ<(↓x.↑N))/x′K↓↑A+�↑↓B−(↓λ<ηA+(z. ηB−(x′ · (↓↑z)<(↑↓x′′.x′′ · NIL)))) : ↓(A+ � B−) ord

Ψ; ∆A ` N1 : A+ ord Ψ; Θ{x′:B− ord} ` N2 : U

Ψ; {{∆A, x:A+ � B−}} ` JJNKηA+(z. ↓ηB−(x · z<NIL))K↓x′.N2 : U

Figure 3.9: Unfocused admissibility for the multiplicative, exponential fragment of OL3
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Ψ; Θ{{x:↑0}} ` x · ↑ABORT : U

Ψ; ∆ ` N1 : A+ ord

Ψ; ∆ ` JN1KηA+(z.INL(z))A+ : A+ ⊕B+ lvl

Ψ; Θ{x1:↑A+ ord} ` N1 : U Ψ; Θ{x1:↑B+ ord} ` N2 : U

Ψ; Θ{{x:↑(A+ ⊕B+)}} ` x · ↑J[ηA+(y.↓↑y), ηB+(y.↓↑y)]K[↓x1.N1, ↓x2.N2] : U

Ψ; ∆ ` ↓> : ↓> lvl

Ψ; Θ{x1:A− ord} ` N1 : U

Ψ; Θ{{x:A− NB−}} ` JηA−(x · π1; NIL)/x1KN1 : U

Ψ; ∆ ` N1 : ↓A− ord Ψ; ∆ ` N2 : ↓B− ord

Ψ; ∆ ` J(↑N1 N ↑N2)/xK↓(ηA−(x · π1; ↑(↓y. y · NIL)) N ηB−(. . .)) : ↓(A− NB−) lvl

Figure 3.10: Unfocused admissibility for the additive connectives of OL3 (omits ⊕R2, NL2)

Ψ ` t : τ Ψ; ∆ ` N : [t/a]A+ ord

Ψ; ∆ ` JNK(η[t/a]A+(z. (t, z))) : ∃a:τ.A+ lvl

Ψ, a:τ ; Θ{x′:↑A+ ord} ` N : U

Ψ; Θ{{x:↑(∃a:τ.A+)}} ` x · ↑Ja.ηA+(z. (a, ↓↑z))K∃a:τ.↓↑A+
(a.↓x′.N) : U

Ψ, a:τ ; ∆ ` N : ↓A− ord

Ψ; ∆ ` J[a].↑N/xK∀a:τ.↑↓A−↑([a].ηA−(x · [a]; ↑(↓y.y · NIL))) : ↓(∀a:τ.A−) lvl

Ψ ` t : τ Ψ; Θ{x′:[t/a]A− ord} ` N : U

Ψ; Θ{{x:∀a:τ.A−}} ` Jη[t/a]A−(x · [a]; NIL)/x′KN ′ : U Ψ; · ` REFL : t
.
= t lvl

∀(Ψ′ ` σ : Ψ). σt = σs → Ψ′;σΘ{·} ` φ(σ) : σU

Ψ; Θ{{x:↑(t .= s)}} ` x · ↑(UNIF (fn σ ⇒ φ(σ))) : U

Figure 3.11: Unfocused admissibility for the first-order connectives of OL3

presentation, as in the structural focalization development, we present unfocused admissibility
primarily on the level of proof terms. The resulting presentation is quite dense; proofs of this
variety really ought to be mechanized, though we leave that for future work.

For the most part, there is exactly one unfocused admissibility rule for each rule of unfocused
OL3. The justifications for the unfocused admissibility lemmas for the multiplicative, exponen-
tial fragment of OL3 are given in Figure 3.9; the additive fragment is given in Figure 3.10, and
the first-order connectives are treated in Figure 3.11. There are two additional rules that account
for the fact that different polarized propositions, like ↓↑↓↑A+ and A+ erase to the same unpo-
larized proposition (A+)◦. For the same reason, Figure 3.9 contains four init-like rules, since
atomic propositions can come in positive and negative varieties and can appear in the context
either suspended or not.

We can view unfocused admissibility as creating an abstraction layer of admissible rules that
can be used to build focused proofs of stable sequents. The proof of the completeness of focusing
below constructs focused proofs entirely by working through the interface layer of unfocused
admissibility.
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3.6.4 Focalization
The act of taking an unfocused proof of an erased sequent and getting a focused proof of the un-
erased sequent is focalization. If we run the constructive content of the proof of the completeness
of focusing (the OL3 analogue of Theorem 2.6 from Section 2.3.7), which takes any stable,
suspension-normal sequent as input, the proof performs focalization.

Theorem 3.9 (Complteness of focusing/focalization).
If Ψ; ∆◦ =⇒ U◦, where ∆ and U are stable and suspension-normal, then Ψ; ∆ ` U .

Proof. By an outer induction on the structure of unfocused proofs and an inner induction over
the structure of polarized formulas A+ and A− in order to remove series of shifts ↑↓ . . . ↑↓A−
from formulas until an unfocused admissibility lemma can be applied.

3.7 Properties of syntactic fragments
In the structural focalization methodology, once cut admissibility and identity expansion are
established the only interesting part of the proof of the completeness of focusing is the definition
of an erasure function and the presentation of a series of unfocused admissibility lemmas. The
unfocused admissibility lemmas for non-invertible rules, like •R and�L, look straightforward:

Ψ; ∆1 ` A+ true Ψ; ∆2 ` B+ true

Ψ; ∆1,∆2 ` A+ •B+ lvl

Ψ; ∆A ` A+ ord Ψ; Θ{x′:B− ord} ` U
Ψ; Θ{{∆A, x:A+ � B−}} ` U

Because unfocused admissibility is defined only on stable sequents in our methodology, the
invertible rules, like •L and�R, require the presence of shifts:

Ψ; Θ{x1:↑A+ ord , x2:↑B+ ord} ` U
Ψ; Θ{{x:↑(A+ •B+)}} ` U

Ψ;x:↑A+ ord ,∆ ` ↓B− true

Ψ; ∆ ` ↓(A+ � B−) lvl

The presence of shifts is curious, due to our observation in Section 3.3.2 that the shifts have much
of the character of exponentials; they are exponentials that do not place any restrictions on the
form of the context.

As a thought experiment, imagine the removal of shifts ↑ and ↓ from the language of propo-
sitions in OL3. Were it not for the presence of atomic propositions p+ and p−, this change
would make every proposition A+ a mobile proposition A+

eph and would make every proposi-
tion A− a right-permeable proposition A−lax . But arbitrary atomic propositions are intended to be
stand-ins for arbitrary propositions! If arbitrary propositions lack shifts, then non-mobile atomic
propositions would appear to no longer stand for anything. Therefore, let’s remove them too,
leaving only the permeable, mobile, and right-permeable atomic propositions p+

pers , p
+
eph , and

p−lax . Having done so, every positive proposition is mobile, and every negative proposition is
right-permeable.

Now we have a logical fragment where every positive proposition is mobile and every nega-
tive proposition is observed to be right-permeable. Consider a derivation Ψ; ∆ ` A+ lax where
∆ is stable and includes only linear and persistent judgments (that is, ∆�eph). It is simple to
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observe that, for every subderivation Ψ′; ∆′ ` U ′, if ∆′ is stable then ∆′ = ∆′�eph , and if U is
stable then U = U�lax . Given that this is the case, the restrictions that the focused ¡R and #L

rules make are always satisfiable, the same property that we previously observed of focused shift
rules ↓R and ↑L. In our syntactic fragment, in other words, the exponentials ¡ and# have become
effective replacements for ↓ and ↑.

The cut and identity theorems survive our restriction of the logic entirely intact: these the-
orems handle each of the connectives separately and are stable to the addition or removal of
individual connectives. That is not true for the unfocused admissibility lemmas, which critically
and heavily use shifts. However, while we no longer have our original shifts, we have replace-
ment shifts in the form of ¡ and#, and can replay the logic of the unfocused admissibility lemmas
in order to gain new ones that look like this:

Ψ; ∆1 ` A+ lax Ψ; ∆2 ` B+ lax

Ψ; ∆1,∆2 ` A+ •B+ lax

Ψ; ∆A ` A+ lax Ψ; Θ{x′:B− eph} ` U
Ψ; Θ{{∆A, x:A+ � B−}} ` U

Ψ; Θ{x1:¡A+ eph, x2:¡B+ eph} ` U
Ψ; Θ{{x:¡(A+ •B+)}} ` U

Ψ;x:¡A+ eph,∆ ` #B− lax

Ψ; ∆ ` #(A+ � B−) lax

(To be clear, just as all the unfocused admissibility lemmas only applied to stable sequents, the
unfocused admissibility lemmas above only apply when contexts and succedents are both stable
and free of judgments T ord and T true.)

The point of this exercise is that, given the definition and metatheory of OL3, there is a
reasonably large family of related systems, including ordered linear logic, lax logic, linear lax
logic, and linear logic, that can be given erasure-based focalization proofs relative to OL3; at
most, the erasure function and the unfocused admissibility lemmas need to be adapted. The
fragment we have defined here corresponds to regular linear logic. In the erasure of polarized
OL3 propositions to linear logic propositions, the “pseudo-shifts” # and ¡ are wiped away:
(#A+)◦ = (A+)◦ and (¡A−)◦ = (A−)◦. Additionally, the two implications are conflated:
(A+ � B−)◦ = (A+ � B−)◦ = (A+)◦ ( (B+)◦. Beyond that, and the renaming of fuse
to tensor – (A+ • B+)◦ = (A+)◦ ⊗ (B+)◦ – the structure of erasure remains intact, and we can
meaningfully focalize unfocused linear logic derivations into focused OL3 derivations.

3.8 The design space of proof terms
In the design space of logical frameworks, our decision to view proof terms E as being fully
intrinsically typed representatives of focused derivations is somewhat unusual. This is because,
in a dependently typed logical framework, the variable substitution theorem (which we had to
establish very early on) and the cut admissibility theorem (which we established much later) are
effectively the same theorem; handling everything at once is difficult at best, and dependent types
seem to force everything to be handled at once in an intrinsically typed presentation.

Since the advent of Watkins’ observations about the existence of hereditary substitution and
its application to logical frameworks [WCPW02], the dominant approach to the metatheory of
logical frameworks has to define proof termsE that have little, if any, implicit type structure: just
enough so that it is possible to define the hereditary substitution function JM/xKE. The work

93



October 15, 2012
DRAFT

by Martens and Crary goes further, treating hereditary substitution as a relation, not a function,
so that absolutely no intrinsic type system is necessary, and the proof terms are merely untyped
abstract binding trees [MC12].

If we were to take such an approach, we would need to treat the judgment Ψ; ∆ ` E : U
as a genuine four-place relation, rather than the three-place relation Ψ; ∆ ` U annotated with a
derivation E of that sequent. Then, the analogue of cut admissibility (part 4) would show that if
Ψ; ∆ `M : A− and Ψ; Θ{x:A− lvl} ` E : U , and Ξ matches Θ{{∆�lvl}}, then Ψ; Ξ ` JM/xKE :
U , where JM/xKE is some function on proof terms that has already been defined, rather than just
an expression of the computational content of the theorem. Being able to comfortably conflate
the computational content of a theorem with its operation on proof terms is the primary advantage
of the approach taken in this chapter; it avoids a great deal of duplicated effort. The cost to this
approach is that we cannot apply the modern Canonical LF methodology in which we define a
proof term language that is intrinsically only simply well-typed and then overlay a dependent
type system on top of it (this is discussed in Section 4.1.2 in the context of LF). As we discuss
further in Section 4.7.3, this turns out not to be a severe limitation given the way we want to use
OL3.

It is not obvious how the substitution JM/xKE could be defined without accounting for the
full structure of derivations. The rightist substitution function, in particular, is computationally
dependent on the implicit bookkeeping associated with the matching constructs, and that book-
keeping is far more of a difficulty in our setting than the implicit type annotations. The problem,
if we wish to see it as a problem, is that we cannot substitute a derivation M of Ψ; ∆ ` A− into
a derivation E of Ψ; Θ{x:A− ord} ` U unless x is actually free in E. Therefore, when we try
to substitute the same M into V1 • V2, we are forced to determine what judgment x is associated
with; if x is associated with a linear or ephemeral judgment, we must track which subderivation
x is assigned to in order to determine what is to be done next.

Fine-grained tracking of variables during substitution is both very inefficient when type the-
ories are implemented as logical frameworks and unnatural to represent for proof assistants like
Twelf that implement a persistent notion of bound variables. Therefore other developments
have addressed this problem (see, for example, Cervesato et al. [CdPR99], Schack-Nielsen and
Schürmann [SNS10], and Crary [Cra10]). It might be possible to bring our development more in
line with these other developments by introducing a new matching construct of substitution into
contexts, the substitution construct [∆/(x:A− lvl)]Ξ. If Ξ = Θ{x:A− lvl}, then this would be the
same as Θ{{∆}}, but if x is not in the variable domain of Ξ, then Ξ matches [∆/(x:A− lvl)]Ξ.

∆�lvl Ψ; ∆ `M : A− Ψ; Ξ ` E : U ∆ stableL JM/xKE = E ′

Ψ; [∆/(x:A− lvl)]Ξ ` E ′ : U rcut

Using this formulation of rcut, it becomes unproblematic to define JM/xK(V1 • V2) to be (JM/xKV1)•
(JM/xKV2), as we are allowed to substitute for x even in terms where the variable cannot ap-
pear. Using this strategy, it should be possible to describe and formalize the development in this
chapter with proof terms that do nothing more than capture the binding structure of derivations.

The above argument suggests that the framing-off operation is inconvenient to use for speci-
fying the rcut part of cut admissibility, because it forces us to track where the variable ends up and
direct the computational content of cut admissibility accordingly. However, the development in
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this chapter shows that it is clearly possible to define cut admissibility in terms of the framing-off
operation Θ{{∆}}. That is not necessarily the case for every logic. For instance, to give a focused
presentation of Reed’s queue logic [Ree09c], we would need a matching construct [∆/x]Ξ that
is quite different from the framing-off operation ∆{{x:A−}} used to describe the logic’s left rules.
I conjecture that logics where the framing-off operation is adequate for the presentation of cut
admissibility are the same as those logics which can be treated in Belnap’s display logic [Bel82].
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Chapter 4

Substructural logical specifications

In this chapter, we design a logical framework of substructural logical specifications (SLS),
a framework heavily inspired by the Concurrent Logical Framework (CLF) [WCPW02]. The
framework is justified as a fragment of the logic OL3 from Chapter 3. There are a number of
reasons why we do not just use the already-specified OL3 outright as a logical framework.

∗ Formality. The specifics of the domain of first-order quantification in OL3 were omitted in
Chapter 3, so in Section 4.1 we give a careful presentation of the term language for SLS,
Spine Form LF.

∗ Clarity. The syntax constructions that we presented for OL3 proof terms had a 1-to-1
correspondence with the sequent calculus rules; the drawback of this presentation is that
large proof terms are notationally heavy and difficult to read. The proof terms we present
for SLS will leave implicit some of the information present in the diacritical marks of
OL3 proof terms.
An implementation based on these proof terms would need to consider type reconstruc-
tion and/or bidirectional typechecking to recover the omitted information, but we will not
consider those issues in this dissertation.

∗ Separating concurrent and deductive reasoning. Comparing CLF to OL3 leads us to con-
clude that the single most critical design feature of CLF is its omission of the proposition
↑A+. This single omission1 means that stable sequents in CLF or SLS are effectively
restricted to have the succedent 〈p−〉 true or the succedent A+ lax .
Furthermore, any left focus when the succedent is 〈p−〉 true must conclude with the rule
id−, and any left focus when the succedent is A+ lax must conclude with #L – without
the elimination of ↑A+, left focus in both cases could additionally conclude with the rule
↑L. This allows derivations that prove 〈p−〉 true – the deductive fragment of CLF or SLS
– to adequately represent deductive systems, conservatively extending deductive logical
frameworks like LF and LLF. Derivations that prove A+ lax , on the other hand, fall into
the concurrent fragment of CLF and SLS and can encode evolving systems.

1In our development, the omission of right-permeable propositions p−lax from OL3 is equally important, but
permeable propositions as we have presented them in Section 2.5.4 were not a relevant consideration in the design
of CLF.
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∗ Partial proofs. The design of CLF makes it difficult to reason about and manipulate the
proof terms corresponding to partial evaluations of evolving systems in the concurrent
fragment: the proof terms in CLF correspond to complete proofs and partial evaluations
naturally correspond to partial proofs.
The syntax of SLS is designed to support the explicit representation of partial OL3 proofs.
The omission of the propositions 0, A+ ⊕ B+, and the restrictions we place on t .

=τ s
are made in the service of presenting a convenient and simple syntax for partial proofs.
The three syntactic objects representing partial proofs, patterns (Section 4.2.4), steps, and
traces (Section 4.2.6), allow us to treat proof terms for evolving systems as first-class
members of SLS.
The removal of 0 and A+ ⊕ B+, and the restrictions we place on t

.
=τ s, also assist

in imposing an equivalence relation, concurrent equality, on SLS terms 4.3. Concurrent
equality is a coarser equivalence relation than the α-equivalence of OL3 terms.

∗ Removal of >. The presence of > causes pervasive problems in the design of substruc-
tural logical frameworks. May of these problems arise at the level of implementation and
type reconstruction, which motivated Schack-Nielson to remove > from the Celf imple-
mentation of CLF [SN11]. Even though those considerations are outside the scope of this
dissertation, the presence of > causes other pervasive difficulties: for instance, the pres-
ence of > complicates the discussion of concurrent equality in CLF. We therefore follow
Schack-Nielson in removing > from SLS.

In summary, with SLS we simplify the presentation of OL3 for convenience and readability,
restrict the propositions of OL3 to separate concurrent and deductive reasoning and to make the
syntax for partial proofs feasible, and extend OL3 with a syntax for partial proofs and a coarser
equivalence relation.

In Section 4.1 we give a brief presentation of the term language for SLS, Spine Form LF.
In Section 4.2 we present SLS as a fragment of OL3, and in Section 4.3 we discuss concurrent
equality. In Section 4.4 we adopt the methodology of adequate encoding from LF to SLS, in the
process introducing generative signatures, which play a starring role in Chapter 9. In Section 4.5
we cover the SLS prototype implementation, and in Section 4.6 we review some intuitions about
logic programming in the SLS. Finally, in Section 4.7, we discuss some of the decisions reflected
in the design of SLS and how some decisions could have been potentially been made differently.

4.1 Spine Form LF as a term language
Other substructural logical frameworks, like Cervesato and Pfenning’s LLF [CP02], Polakow’s
OLF [Pol01], and Watkins et al.’s CLF [WCPW02] are fully-dependent type theories: the lan-
guage of terms (that is, the domain of first-order quantification) is the same as the language of
proof terms, the representatives of logical derivations. The logical framework SLS presented in
this chapter breaks from this tradition – a choice we discuss further in Section 4.7.3. The domain
of first-order quantification, which was left unspecified in Chapter 3, will be presently described
as Spine Form LF, a well-understood logical framework derived from the normal forms of the
purely persistent type theory LF [HHP93].
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All the information in this section is standard and adapted from various sources, especially
Harper, Honsell, and Plotkin’s original presentation of LF [HHP93], Cervesato and Pfenning’s
discussion of spine form terms [CP02], Watkins et al.’s presentation of the canonical forms of
CLF [WCPW02], Nanevski et al.’s dependent contextual modal type theory [NPP08], Harper
and Licata’s discussion of Canonical LF [HL07], and Reed’s spine form presentation of HLF
[Ree09a].

It would be entirely consistent for us to appropriate Harper and Licata’s Canonical LF presen-
tation instead of presenting Spine Form LF. Nevertheless, a spine-form presentation of canonical
LF serves to make our presentation more uniform, as spines are used in the proof term language
of SLS. Canonical term languages like Canonical LF correspond to normal natural deduction pre-
sentations of logic, whereas spine form term languages correspond to focused sequent calculus
presentations like the ones we have considered thus far.

4.1.1 Core syntax
The syntax of Spine Form LF is extended in two places to handle SLS: rules r : A− in the
signature contain negative SLS types A− (it would be possible to separate out the LF portion of
signatures from the SLS rules), and several new base kinds are introduced for the sake of SLS –
prop, prop ord, prop lin, and prop pers.

Signatures Σ ::= · | Σ, c : τ | Σ, a : κ | Σ, r : A−

Variables a, b ::= . . .

Variable contexts Ψ ::= · | Ψ, a:τ

Kinds κ ::= Πa:τ.κ | type | prop | prop ord | prop lin | prop pers

Types τ ::= Πa:τ.τ ′ | a · sp

Heads h ::= a | c

Normal terms t, s ::= λa.t | h · sp

Spines sp ::= t; sp | ()
Substitutions σ ::= · | t/a, σ | b//a, σ

Types τ and kinds κ overlap, and will be referred to generically as classifiers ν when it is con-
venient to do so; types and kinds can be seen as refinements of classifiers. Another important
refinement are atomic classifiers a · sp, which we abbreviate as p.

LF spines sp are just sequences of terms (t1; (. . . ; (tn; ()) . . .)); we will follow common con-
vention and write h t1 . . . tn as a convenient shorthand for the atomic term h · (t1; . . . ; (tn; ()) . . .);
similarly, we will write a t1 . . . tn as a shorthand for atomic classifiers a · (t1; (. . . ; (tn; ()) . . .)).
This shorthand is given a formal justification in [CP02]; we will use the same shorthand for
SLS proof terms in Section 4.2.5.

4.1.2 Simple types and hereditary substitution
In addition to LF types like Πa:(Πz:(a1 · sp1). (a2 · sp2)).Πy:(a3 · sp3). (a4 · sp4), both Canon-
ical LF and Spine Form LF take simple types into consideration. The simple type corresponding
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t ◦ sp

(λa.t′) ◦ (t; sp) = Jt/aKt′ ◦ sp

h · sp ◦ () = h · sp

Jt/aKsp Jt/aKt′

Jt/aK(t′; sp) = Jt/aKt′; Jt/aKsp Jt/aK(λy.t′) = λb. Jt/aKt′ (a 6= b)

Jt/aK() = () Jt/aK(a · sp) = t ◦ Jt/aKsp

Jt/aK(h · sp) = h · Jt/aKsp (if h 6= a)

Figure 4.1: Hereditary substitution on terms, spines, and classifiers

to the type above is (a1 → a2) → a3 → a4, where → associates to the right. The simple
type associated with the LF type τ is given by the function |τ |− = τs, where |a · sp|− = a and
|Πa:τ.τ ′|− = |τ |− → |τ ′|−.

Variables and constants are treated as having an intrinsic simple type; these intrinsic simple
types are sometimes written explicitly as annotations aτs or cτs (see [Pfe08] for an example), but
we will leave them implicit. An atomic term h t1 . . . tn must have a simple atomic type a. This
means that the head hmust have simple type τs1 → . . .→ τsn → a and each ti much have simple
type τsi. Similarly, a lambda term λa.t must have simple type τs → τ ′s where a is a variable with
simple type τs and t has simple type τ ′s.

Simple types, which are treated in full detail elsewhere [HL07, Ree09a], are critical be-
cause they allow us to define hereditary substitution and hereditary reduction as total functions
in Figure 4.1. Intrinsically-typed Spine Form LF terms correspond to the proof terms for a
focused presentation of (non-dependent) minimal logic. Hereditary reduction t ◦ sp and hered-
itary substitution Jt/aKt′, which are both implicitly indexed by the simple type τs of t, cap-
ture the computational content of structural cut admissibility on these proof terms. Informally,
the action of hereditary substitution is to perform a substitution into a term and then continue
to reduce any β-redexes that would introduced by a traditional substitution operation. There-
fore, Jλx.x/fK(a (f b) (f c)) is not a ((λx.x) b) ((λx.x) c) – that’s not even a syntactically well-
formed term according to the grammar for Spine Form LF. Rather, the result of that hereditary
substitution is a b c.

4.1.3 Judgments

Hereditary substitution is necessary to define simultaneous substitution into types and terms in
Figure 4.2. We will treat simultaneous substitutions in a mostly informal way, relying on the
more careful treatment by Nanevski et al. [NPP08]. A substitution takes every variable in the
context and either substitutes a term for it (the form σ, t/a) or substitutes another variable for it
(the form σ, b//a). The latter form is helpful for defining identity substitutions, which we write
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σ(sp) σ(t′)

σ(t′; sp) = σ(t′);σ(sp) σ(λa.t′) = λa. (σ, a//a)(t′) (a#σ)

σ() = () σ(a · sp) = t ◦ σ(sp) t/a ∈ σ
σ(a · sp) = b · σ(sp) b//a ∈ σ
σ(c · sp) = c · σ(sp)

σν

σ(Πb:ν.ν ′) = Πb:σν. (σ, b//b)ν ′ (a 6= b)

σ(type) = type

σ(prop) = prop

σ(prop ord) = prop ord

σ(prop lin) = prop lin

σ(prop pers) = prop pers

σ(a · sp) = a · σsp

Figure 4.2: Simultaneous substitution on terms, spines, and classifiers

as id or idΨ, as well as generic substitutions [t/a] that act like the identity on all variables except
for a; the latter notation is used in the definition of LF typing in in Figure 4.3, which is adapted
to Spine Form LF from Harper and Licata’s Canonical LF presentation [HL07]. The judgments
a#σ, a#Ψ, c#Σ, a#Σ, and r#Σ assert that the relevant variable or constant does not already
appear in the context Ψ (as a binding a:τ ), the signature Σ (as a declaration c : τ , a : ν, or
r : A−), or the substitution σ (as a binding t/a or b//a).

All the judgments in Figure 4.3 are indexed by a transitive subordination relation R, sim-
ilar to the one introduced by Virga in [Vir99]. The subordination relation is used to deter-
mine if a term or variable of type τ1 can be a (proper) subterm of a term of type τ2. Uses
of subordination appear in the definition of well-formed equality propositions t .

=τ s in Sec-
tion 4.2, in the preservation proofs in Section 9.5, and in adequacy arguments (as discussed
in [HL07]). We treat R as a binary relation on type family constants. Let head(τ) = a if
τ = Πa1:τ1. . .Πam:τm. a · sp. The signature formation operations depend on three judgments.
The index subordination judgment, κ <R a, relates type family constants to types. It is always
the case that κ = Πa1:τ1.. . .Πan:τn.type, and the judgment κ <R a holds if (head(τi), a) ∈ R
for 1 ≤ i ≤ n. The type subordination judgment τ ≺R τ ′ holds if (head(τ), head(τ ′)) ∈ R, and
the judgment τ �R τ ′ is the symmetric extension of this relation.

In Figure 4.3, we define the formation judgments for LF. The first formation judgment is
`R Σ sig, which takes a context Σ and determines whether it is well-formed. The premise
τ ≺R τ is used in the definition of term constants to enforce that only self-subordinate types
can have constructors. This, conversely, means that types that are not self-subordinate can only
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`R Σ sig

`R · sig

`R Σ sig · `Σ,R τ type τ ≺R τ c#Σ

`R (Σ, c : τ) sig

`R Σ sig · `Σ,R κ kind κ <R a a#Σ

`R (Σ, a : κ) sig

`R Σ sig ·; · `Σ,R A
− prop− r#Σ

`R (Σ, r : A−) sig

`Σ,R Ψ ctx – presumes `R Σ sig

`Σ,R · ctx

`Σ,R Ψ ctx Ψ `Σ,R τ type a#Ψ

`Σ,R (Ψ, a:τ) ctx

Ψ `Σ,R κ kind – presumes `Σ,R Ψ ctx

Ψ `Σ,R τ type Ψ, a:τ `Σ,R κ kind

Ψ `Σ,R (Πa:τ.κ) kind Ψ `Σ,R type kind Ψ `Σ,R prop kind

Ψ `Σ,R (prop ord) kind Ψ `Σ,R (prop lin) kind Ψ `Σ,R (prop pers) kind

Ψ `Σ,R τ type – presumes `Σ,R Ψ ctx

Ψ `Σ,R τ type Ψ, a:τ `Σ,R τ
′ type τ �R τ ′

Ψ `Σ,R (Πa:τ.τ ′) type

a:κ ∈ Σ Ψ, [κ] `Σ,R sp : type

Ψ `Σ,R (a · sp) type

Ψ `Σ,R t : τ – presumes Ψ `Σ,R τ type

Ψ, a:τ `Σ,R t : τ ′

Ψ `Σ,R λa.t : Πx:τ.τ ′
c : τ ∈ Σ Ψ, [τ ] `Σ,R sp : τ ′ τ ′ = p

Ψ `Σ,R c · sp : p

a:τ ∈ Ψ Ψ, [τ ] `Σ,R sp : τ ′ τ ′ = p

Ψ `Σ,R a · sp : p

Ψ, [ν] `Σ,R sp : ν0 – presumes that either Ψ `Σ,R ν type or that Ψ `Σ,R ν kind

Ψ, [ν] `Σ,R () : ν

Ψ `Σ,R t : τ [t/a]ν = ν ′ Ψ, [ν ′] `Σ,R sp : ν0

Ψ, [Πa:τ.ν] `Σ,R t; sp : ν0

Ψ ` σ : Ψ′ – presumes `Σ,R Ψ ctx and `Σ,R Ψ′ ctx

Ψ `Σ,R · : ·
Ψ `Σ,R σ : Ψ′ Ψ `Σ,R t : στ

Ψ `Σ,R (σ, t/a) : Ψ′, a:τ

Ψ `Σ,R σ : Ψ′ b:στ ∈ Ψ

Ψ `Σ,R (σ, b//a) : Ψ′, a:τ

Figure 4.3: LF formation judgments (τ ′ = p refers to α-equivalence)
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be inhabited by variables a, which is important for one of the two types of equality t .=τ s that
SLS supports. The judgments `Σ,R Ψ ctx, Ψ `Σ,R κ kind, and Ψ `Σ,R τ type similarly take
contexts Ψ, kinds κ, and types τ and ensure that they are well-formed in the current signature
or (if applicable) context. The judgment Ψ `Σ,R t:τ takes a term and a type and typechecks the
term against the type, and the judgment Ψ `Σ,R σ : Ψ′ checks that a substitution σ can transport
objects (terms, types, etc.) defined in the context Ψ′ to objects defined in Ψ.

The judgment Ψ, [ν] `Σ,R sp : ν0 is read a bit differently than these other judgments. The
notation, first of all, is meant to evoke the (exactly analogous) left-focus judgments from Chap-
ters 2 and 3. In most other sources (for example, in [CP02]) this judgment is instead written as
Ψ `Σ,R sp : ν > ν0. In either case, we read this judgment as checking a spine sp against a classi-
fier ν (actually either a type τ or a kind κ) and synthesizing a return classifier ν0. In other words,
ν0 is an output of the judgment Ψ, [ν] `Σ,R sp : ν0, and given that this judgment presumes that
either Ψ `Σ,R ν type or Ψ `Σ,R ν kind, it ensures that either Ψ `Σ,R ν0 type or Ψ `Σ,R ν0 kind,
where the classifiers of ν and ν0 (type or kind) always match. It is because ν0 is an output that
we add an explicit premise to check that τ ′ = p in the typechecking rule for c · sp; this equality
refers to the α-equality of Spine Form LF terms.

There are a number of well-formedness theorems that we need to consider, such as the fact
that substitutions compose in a well-behaved way and that hereditary substitution is always well-
typed. However, as these theorems are adequately covered in the aforementioned literature on
LF, we will proceed with using LF as a term language and will treat term-level operations like
substitution somewhat informally.

We will include annotations for the signature Σ and the subordination relation R in the def-
initions of this section and the next one. In the following sections and chapters, however, we
will often leave the signature Σ implicit when it is unambiguous or unimportant. We will almost
always leave the subordination relation implicit; we can assume where applicable that we are
working with the strongest (that is, the smallest) subordination relation for the given signature
[HL07].

4.1.4 Adequacy

Adequacy was the name given by Harper, Honsell, and Plotkin to the methodology of connecting
inductive definitions to the canonical forms of a particular type family in LF. Consider, as a
standard example, the untyped lambda calculus, which is generally specified by a BNF grammar
such as the following:

e ::= x | λx.e | e1 e2

We can adequately encode this language of terms into LF (with a subordination relation R such
that (exp, exp) ∈ R) by giving the following signature:

Σ = ·,
exp : type,

app : Πa:exp.Πb:exp. exp,

lam : Πa:(Πb:exp. exp). exp
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Note that the variables a and b are bound by Π-quantifiers in the declaration of app and lam but
never used. The usual convention is to abbreviate Πa:τ.τ ′ as τ → τ ′ when a is not free in τ ′,
which would give app type exp→ exp→ exp and lam type (exp→ exp)→ exp.

Theorem 4.1 (Adequacy for terms). Up to standard α-equivalence, there is a bijection between
expressions e (with free variables in the set {x1, . . . , xn}) and Spine Form LF terms t such that
x1:exp, . . . , xn:exp ` t : exp.

Proof. By induction on the structure of the inductive definition of e in the forward direction and
by induction on the structure of terms t with type exp in the reverse direction.

We express the constructive content of this theorem as a bijective function peq = t from
object language terms e to representations LF terms t of type exp:

∗ pxq = x,

∗ pe1 e2q = app pe1q pe2q, and

∗ pλx.eq = lamλx. peq.

If we had also defined substitution [e/x]e′ on terms, it would be necessary to show that the bi-
jection is compositional: that is, that [peq/x]pe′q = p[e/x]e′q. Note that adequacy critically
depends on the context having the form x1:exp, . . . , xn:exp. If we had a context with a vari-
able y:(exp → exp), then we could form an LF term y (lamλx.x) with type exp that does not
adequately encode any term e in the untyped lambda calculus.

One of the reasons subordination is important in practice is that it allows us to consider
the adequate encoding of expressions in contexts Ψ that have other variables x:τ as long as
(head(τ), exp) /∈ R. If Ψ, x:τ `Σ,R t : exp and τ 6�R exp, then x cannot be free in t, so
Ψ `Σ,R t : exp holds as well. By iterating this procedure, it may be possible to strengthen a
context Ψ into one of the form x1:exp, . . . , xn:exp, in which case we can conclude that t = peq
for some untyped lambda calculus term e.

4.2 The logical framework SLS
In this section, we will describe the restricted set of polarized OL3 propositions and focused
OL3 proof terms that make up the logical framework SLS. For the remainder of the dissertation,
we will work exclusively with the following positive and negative SLS propositions, which are a
syntactic refinement of the positive and negative propositions of polarized OL3:

A+, B+, C+ ::= p+ | p+
eph | p

+
pers | ↓A− | ¡A− | !A− | 1 | A+ •B+ | ∃a:τ.A+ | t .=τ s

A−, B−, C− ::= p− | #A+ | A+ � B− | A+ � B− | A− NB− | ∀a:τ.A−

We now have to deal with a point of notational dissonance: all existing work on CLF, all existing
implementations of CLF, and the prototype implementation of SLS (Section 4.5) use the notation
{A+} for the connective internalizing the judgment A+ lax , which we have written as #A+, fol-
lowing Fairtlough and Mendler [FM95]. The traditional notation overloads curly braces, which
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Ψ `Σ,R C satisfiable – presumes `Σ,R Ψ ctx, that the terms in

Ψ `Σ,R · satisfiable

Ψ `Σ,R t:τ Ψ `Σ,R C satisfiable

Ψ `Σ,R (C, t .=τ t) satisfiable

a:p ∈ Ψ Ψ `Σ,R t : p Ψ′ `Σ,R [t/a] : Ψ Ψ′ `Σ,R [t/a]C satisfiable

Ψ `Σ,R (C, a .
=p t) satisfiable

Figure 4.4: Equality constraints (used to support notational definitions)

we also use for the context-framing notation Θ{∆} introduced in Section 3.2. We will treat#A+

and {A+} as synonyms in SLS, preferring the former in this chapter and the latter afterwards.
Positive ordered atomic propositions p+ are atomic classifiers a t1 . . . tn with kind prop ord,

positive linear and persistent atomic propositions p+
eph and p+

pers are (respectively) atomic clas-
sifiers with kind prop lin and prop pers, and negative ordered atomic propositions p− are atomic
classifiers with kind prop. From this point on, we will unambiguously refer to atomic proposi-
tions p− as negative atomic propositions, omitting “ordered.” Similarly, we will refer to atomic
propositions p+, p+

eph , and p+
pers collectively as positive atomic propositions but individually as

ordered, linear, and persistent propositions, respectively, omitting “positive.” (“Mobile” and
“ephemeral” will continue to be used as synonyms for “linear.”)

4.2.1 Propositions
The formation judgments for SLS types are given in Figure 4.5. As discussed in the introduction
to this chapter, the removal of ↑A+ and p−lax is fundamental to the separation of the deductive and
concurrent fragments of SLS; all the other restrictions made to the language are for the purpose
of giving partial proofs a list-like structure. In particular, all positive propositions whose left
rules have more or less than one premise are restricted. The propositions 0 and A+ ⊕ B+ are
excluded from SLS to this end, and we must place rather draconian restrictions on the use of
equality in order to ensure that .=L can always be treated as having exactly one premise.

The formation rules for propositions are given in Figure 4.5. Much of the complexity of this
presentation, such as the existence of an additional constraint context C, described in Figure 4.4,
is aimed at allowing the inclusion of equality in SLS in a sufficiently restricted form. The intent
of these restrictions is to ensure that, whenever we decompose a positive proposition s .

= t on
the left, we have that s = a for some variable a in the context and a is not free in t. When this is
the case, [t/a] is always a most general unifier of s = a and t, which in turn means that the left
rule for equality in OL3

∀(Ψ′ ` σ : Ψ). σt = σs −→ Ψ′;σΘ{·} ` σU
Ψ; Θ{{t .=τ s}} ` U

.
=L

is equivalent to a much simpler rule:

Ψ, [t/a]Ψ′; [t/a]Θ{·} ` [t/a]U

Ψ, a:τ,Ψ′; Θ{{a .
=τ t}} ` U

.
=yes
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Ψ; C `Σ,R A
+ prop+ – presumes `Σ,R Ψ ctx and that Ψ ` C satisfiable.

a:κ ∈ Σ Ψ, [κ] `Σ,R sp : prop ord

Ψ; C `Σ,R a · sp prop+

a:κ ∈ Σ Ψ, [κ] `Σ,R sp : prop lin

Ψ; C `Σ,R a · sp prop+

a:κ ∈ Σ Ψ, [κ] `Σ,R sp : prop pers

Ψ; C `Σ,R a · sp prop+

Ψ; · `Σ,R A
− prop−

Ψ; C `Σ,R ↓A− prop+

Ψ; · `Σ,R A
− prop−

Ψ; C `Σ,R ¡A− prop+

Ψ; · `Σ,R A
− prop−

Ψ; C `Σ,R !A− prop+ Ψ; C `Σ,R 1 prop+

Ψ; C `Σ,R A
+ prop+ Ψ; C `Σ,R B

+ prop+

Ψ; C `Σ,R A
+ •B+ prop+

Ψ `Σ,R τ type (t = a or Ψ `Σ,R t : τ) Ψ, a:τ ; C, a .
=τ t `Σ,R A

+ prop+

Ψ; C `Σ,R ∃a:τ.A+ prop+

Ψ `Σ,R p type a:p ∈ Ψ b:p ∈ Ψ p 6≺R p
Ψ; C `Σ,R a

.
=p b prop+

t
.
=p s ∈ C Ψ `Σ,R s : p

Ψ; C `Σ,R t
.
=p s prop+

Ψ; C `Σ,R A
− prop− – presumes `Σ,R Ψ ctx and the multiset C ⊆ Ψ

a:κ ∈ Σ Ψ, [κ] `Σ,R sp : prop

Ψ; C `Σ,R a · sp prop−
Ψ; · `Σ,R A

+ : prop+

Ψ; C `Σ,R #A+ prop−

Ψ; C `Σ,R A
+ prop+ Ψ; C `Σ,R B

− prop−

Ψ; C `Σ,R A
+ � B− prop−

Ψ; C `Σ,R A
+ prop+ Ψ; C `Σ,R B

− prop−

Ψ; C `Σ,R A
+ � B− prop−

Ψ; C `Σ,R A
− prop− Ψ; C `Σ,R B

− prop−

Ψ; C `Σ,R A
− NB− prop−

Ψ; C `Σ,R τ type (t = a or Ψ `Σ,R t : τ) Ψ, a:τ ; C, a .
=τ t `Σ,R A

− prop−

Ψ; C `Σ,R ∀a:τ.A− prop−

Figure 4.5: SLS propositions
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Usually, when we require the “existence of most general unifiers,” that signals that a most general
unifier must exist if any unifier exists. The condition we are requiring is much stronger: for the
unification problems we will encounter due to the .

=L rule, a most general unifier must exist.
Allowing unification problems that could fail would require us to consider positive inversion
rules with zero premises, and the proposition 0 was excluded from SLS precisely to prevent us
from needing to deal with positive inversion rules with zero premises.2

There are two distinct conditions under which we can be sure that unification problems al-
ways have a most general solution – when equality is performed over pure variables and when
equality is used as a notational definition [PS99a]. Equality of pure variable types is used in the
destination-adding transformation in Chapter 7, and notational definitions are used extensively
Chapter 8.

Pure variables Equality at an atomic type p that is not subordinate to itself (p 6≺R p) is always
allowed. This is reflected in the first formation rule for t .= s in Figure 4.5.

Types that are not self-subordinate can only be inhabited by variables: that is, if p 6≺R p and
Ψ `Σ,R t : p, then t = a where a:p ∈ Ψ. For any unification problem a

.
= b, both [a/b] and [b/a]

are most general unifiers.

Notational definitions Using equality as a notational definition allows us manipulate proposi-
tions in ways that have no effect on the structure of synthetic inference rules. When we check a
universal quantifier ∀a:p.A− or existential quantifier ∃a:p.A+, we are allowed to introduce one
term t that will be forced, by the use of equality, to be unified with this newly-introduced vari-
able. Then we can mention that equality later by writing a .

=p t in the proposition by adding
the a .

=p t to the set of constraints C and then using the second formation rule for t .
=p s in

Figure 4.5.
The notational definition a

.
=p t must be reachable from its associated quantifier without

crossing a shift or an exponential – in Andreoli’s terms, it must be in the same monopole (Sec-
tion 2.4). This condition, which it might be possible to relax at the cost of further complexity else-
where in the presentation, is enforced by the formation rules for shifts and exponentials, which
clear the context C in their premise. The proposition ∀a. ↓(p a) � a

.
= t � p t satisfies this

condition but ∀a.#(a
.
= t) does not (# breaks focus), and the proposition#(∃a.a .

=p t) satisfies
this condition but #(∃a.↑(a .

= t� p a)) does not (↑ breaks focus). The rule #(∃a:p. a
.
=p s a)

doesn’t pass muster because the term tmust be well-formed in a context that does not include a –
this is related to the occurs check in unification. The rule#(∃a. a .

= t•a .
= s) is not well-formed

if t and s are syntactically distinct. Each variable can only be notationally defined to be one term;
otherwise we could encode an arbitrary unification problem t

.
= s.

4.2.2 Substructural contexts
Figure 4.6 describes the well-formed substructural contexts in SLS. The judgment Ψ `Σ,R T left
is used to check stable bindings x:A− lvl and z:p+

lvl lvl that can appear as a part of stable, in-

2The other side of this observation is that, if we allow the proposition 0 and adapt the logical framework accord-
ingly, it might be possible to reduce or eliminate the restrictions we have placed on equality.
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Ψ `Σ,R T left – presumes `Σ,R Ψ ctx

Ψ; · `Σ,R A
− prop−

Ψ `Σ,R (A− lvl) left

a : κ ∈ Σ Ψ, [κ] `Σ,R sp : prop ord

Ψ `Σ,R (〈a · sp〉 ord) left

a : κ ∈ Σ Ψ, [κ] `Σ,R sp : prop lin

Ψ `Σ,R (〈a · sp〉 eph) left

a : κ ∈ Σ Ψ, [κ] `Σ,R sp : prop pers

Ψ `Σ,R (〈a · sp〉 pers) left

Ψ `Σ,R ∆ stable – presumes `Σ,R Ψ ctx

Ψ `Σ,R · stable

Ψ `Σ,R ∆ stable Ψ `Σ,R T left

Ψ `Σ,R (∆, x:T ) stable

Ψ `Σ,R ∆ inv – presumes `Σ,R Ψ ctx

Ψ `Σ,R · inv

Ψ `Σ,R ∆ inv Ψ `Σ,R T left

Ψ `Σ,R (∆, x:T ) inv

Ψ `Σ,R ∆ inv Ψ; C `Σ,R A
+ prop+

Ψ `Σ,R (∆, x:A+ ord) inv

Ψ `Σ,R ∆ infoc – presumes `Σ,R Ψ ctx

Ψ `Σ,R ∆ infoc Ψ `Σ,R T left

Ψ `Σ,R (∆, x:T ) infoc

Ψ `Σ,R ∆ stable Ψ; C `Σ,R A
− prop−

Ψ `Σ,R (∆, x:[A−] ord) infoc

Figure 4.6: SLS contexts

verting, or left-focused sequents; the judgment Ψ `Σ,R ∆ stable just maps this judgment over
the context. The judgment Ψ `Σ,R ∆ inv describes contexts during the inversion phase, which
can also contain inverting positive propositions A+. The judgment Ψ `Σ,R ∆ infoc describes a
context that is stable aside from the one negative proposition in focus.

The rules for inverting and focusing on propositions in Figure 4.6 use non-empty constraint
context. This is necessary because the property of being a well-formed proposition is not stable
under arbitrary substitutions. Even though ∀a:p. (a

.
=p c) � A− is a well-formed negative

proposition according to Figure 4.5, (a
.
=p c)� A− is only a well-formed proposition if we add

a
.
=p c to the set of constraints, and (c

.
=p c)� [c/a]A− is only a well-formed proposition if we

add c
.
=p c to the set of constraints.

The restrictions we make to contexts justify our continued practice of omitting the ord an-
notation when talking about inverting positive propositions A+ or focused negative propositions
[A−] in the context, since these context constituents only appear in conjunction with the ord
judgment.

This discussion of well-formed propositions and contexts takes care of any issues dealing
with variables that were swept under the rug in Chapter 3. We could stop here and use the
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refinement of OL3 proof terms that corresponds to our refinement of propositions as the language
of SLS proof terms. This is not desirable for two main reasons. First, the proof terms of focused
OL3 make it inconvenient (though not impossible) to talk about concurrent equality (Section 4.3).
Second, one of our primary uses of SLS in this dissertation will be to talk about traces, which
correspond roughly to partial proofs

Ψ′; ∆′ ` A+ lax
...

Ψ; ∆ ` A+ lax

in OL3, where both the top and bottom sequents are stable and where A+ is some unspecified,
parametric positive proposition. Using OL3-derived proof terms makes it difficult to talk about
about and manipulate proofs of this form.

In the remainder of this section, we will present a proof term assignment for SLS that facil-
itates discussing concurrent equality and partial proofs. SLS proof terms are in bijective corre-
spondence with a refinement of OL3 proof terms when we consider complete (deductive) proofs,
but the introduction of patterns and traces reconfigures the structure of derivations and proof
terms.

4.2.3 Process states
A process state is a disembodied left-hand side of a sequent that we use to describe the interme-
diate states of concurrent systems. Traces, introduced in Section 4.2.6, are intended to capture
the structure of partial proofs:

Ψ′; ∆′ ` A+ lax
...

Ψ; ∆ ` A+ lax

The type of a trace will be presented as a relation between two process states. As a first cut, we
can represent the initial state as (Ψ; ∆) and the final state as (Ψ′; ∆′), and we can omit Ψ and just
write ∆ when that is sufficiently clear.

Representing a process state as merely an LF context Ψ and a substructural context ∆ is
insufficient because of the way equality – pure variable equality in particular – can unify distinct
variables. Consider the following partial proof:

b:p; z:〈foo b b〉 eph ` (foo b b) lax
...

a:p, b:p; x:#(a
.
=τ b) eph, z:〈foo a a〉 eph ` (foo a b) lax

This partial proof can be constructed in one focusing stage by a left focus on x. It is insufficient to
capture the first process state as (a:p, b:p; x:#(a

.
=τ b), z:〈foo a a〉 eph) and the second process

state as (b:p; z:〈foo b b〉 eph), as this would fail to capture that the succedent (foo b b) lax is a
substitution instance of the succedent (foo a b) lax . In general, if the derivation above proved
some arbitrary succedent A+ lax instead of the specific succedent (foo a b) lax , then the missing
subproof would have the succedent [b/a]A+ lax .
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A process state is therefore written as (Ψ; ∆)σ and is well-formed under signature Σ and sub-
ordination relationR if Ψ `Σ,R ∆ inv (which presumes that `Σ,R Ψ ctx, as defined in Figure 4.3)
and if Ψ ` σ : Ψ0, where Ψ0 is some other context that represents the starting point, the context
in which the disconnected succedent A+ lax is well-formed.

Ψ `Σ,R ∆ inv `Σ,R Ψ0 : ctx Ψ ` σ : Ψ0

`Σ,R (Ψ; ∆)σ state

Taking Ψ0 = a:p, b:p, the partial proof above can thus be represented as a step (Section 4.2.6)
between these two process states:

(a:p, b:p; x:#(a
.
=τ b), z:〈foo a a〉 eph)(a/a, b/b) ;Σ,R (b:p; z:〈foo b b〉 eph)(b/a, b/b)

Substitutions are just one of several ways that we could cope with free variables in succe-
dents; another option, discussed in Section 4.3, is to track the set of constraints a = b that have
been encountered by unification. When we consider traces in isolation, we will generally let
Ψ0 = · and σ = ·, which corresponds to the case where the parametric conclusion A+ is a
closed proposition. When the substitution is not mentioned, it can therefore be presumed to be
empty. Additionally, when the LF context Ψ is empty or clear from the context, we will omit it
as well. One further simplification is that we will occasionally omit the judgment lvl associated
with a suspended positive atomic proposition 〈p+

lvl〉 lvl , but only when it is unambiguous from the
current signature that p+

lvl is an ordered, linear, or persistent positive atomic proposition. In the
examples above, we tacitly assumed that foo was given kind p→ p→ prop lin in the signature Σ
when we tagged the suspended atomic propositions with the judgment eph. If it had been clear
that foo was linear, then this judgment could have been omitted.

4.2.4 Patterns
A pattern is a syntactic entity that captures the list-like structure of left inversion on positive
propositions. The OL3 proof term for the proposition (∃a. p a • ¡A− • ↓B−)� C−, is somewhat
inscrutable: λ<a.••〈x〉.¡y.↓z.N . The SLS proof of this proposition, which uses patterns, is
(λa, x, y, z.N). The pattern P = a, x, y, z captures the structure of left inversion on the positive
proposition ∃a. p a • ¡A− • ↓B−.

The grammar of patterns is straightforward. Inversion on positive propositions can only have
the effect of introducing new bindings (either LF variables a or SLS variables x) or handling a
unification a .

=p t, which by our discussion above can always be resolved by the most general
unifier [t/a], so the pattern associated with a proposition a .

=p t is t/a.

P ::= () | x, P | a, P | t/a, P

For sequences with one or more elements, we omit the trailing comma and (), writing x, . . . , z
instead of x, . . . , z, ().

SLS patterns have a list-like structure (the comma is right associative) because they capture
the sequential structure of proofs. The associated decomposition judgment P :: (Ψ; ∆)σ =⇒Σ,R
(Ψ′; ∆′)σ′ takes two process states. It operates a bit like the spine typing judgment from Fig-
ure 4.3 in that the process state (Ψ; ∆)σ (and the pattern P ) are treated as an input and the
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P :: (Ψ; ∆)σ =⇒Σ,R (Ψ′; ∆′)σ′ – presumes `Σ,R (Ψ; ∆)σ state

Ψ `Σ,R ∆ stable

() :: (Ψ; ∆)σ =⇒Σ,R (Ψ; ∆)σ
()

P :: (Ψ; Θ{z:〈p+
lvl〉 lvl})σ =⇒Σ,R (Ψ′; ∆′)σ′

z, P :: (Ψ; Θ{{p+
lvl}})σ =⇒Σ,R (Ψ′; ∆′)σ′

η+
P :: (Ψ; Θ{x:A− ord})σ =⇒Σ,R (Ψ′; ∆′)σ′

x, P :: (Ψ; Θ{{↓A−}})σ =⇒Σ,R (Ψ′; ∆′)σ′
↓L

P :: (Ψ; Θ{x:A− eph})σ =⇒Σ,R (Ψ′; ∆′)σ′

x, P :: (Ψ; Θ{{¡A−}})σ =⇒Σ,R (Ψ′; ∆′)σ′
¡L

P :: (Ψ; Θ{x:A− pers})σ =⇒Σ,R (Ψ′; ∆′)σ′

x, P :: (Ψ; Θ{{!A−}})σ =⇒Σ,R (Ψ′; ∆′)σ′
!L

P :: (Ψ; Θ{·})σ =⇒Σ,R (Ψ′; ∆′)σ′

P :: (Ψ; Θ{{1}})σ =⇒Σ,R (Ψ′; ∆′)σ′
1L

P :: (Ψ; Θ{A+, B+})σ =⇒Σ,R (Ψ′; ∆′)σ′

P :: (Ψ; Θ{{A+ •B+}})σ =⇒Σ,R (Ψ′; ∆′)σ′
•L

P :: (Ψ, a:τ ; Θ{A+})σ =⇒Σ,R (Ψ′; ∆′)σ′

a, P :: (Ψ; Θ{{∃a:τ.A+}})σ =⇒Σ,R (Ψ′; ∆′)σ′
∃L

P :: (Ψ, [t/a]Ψ′; [t/a]Θ{·})[t/a]σ =⇒Σ,R (Ψ′; ∆′)σ′

t/a, P :: (Ψ, a:τ,Ψ′; Θ{{a .
=τ t}})σ =⇒Σ,R (Ψ′; ∆′)σ′

.
=L

Figure 4.7: SLS patterns

process state (Ψ′; ∆′)σ′ is treated as an output. The typing rules for SLS patterns are given in
Figure 4.7. We preserve the side conditions from the previous chapter: when we frame off a
inverting positive proposition in the process state, it is required to be the left-most one. As in
focused OL3, this justifies our omission of the variables associated with positive propositions:
the positive proposition we frame off is always uniquely identified not by its associated variable
but by its position in the context.

Note that there no longer appears to be a one-to-one correspondence between proof terms
and rules: ↓L, ¡L, and !L appear to have the same proof term, and 1L and •L appear to have
no proof term at all. To view patterns as being intrinsically typed – that is, to view them as
actual representatives of (incomplete) derivations – we must think of patterns as carrying extra
annotations that allow them to continue matching the structure of proof rules.

4.2.5 Values, terms, and spines

Notably missing from the SLS types are the upshifts ↑A+ and right-permeable negative atomic
propositions p−lax . The removal of these two propositions effectively means that the succedent
of a stable SLS sequent can only be 〈p−〉 true or A+ lax . The SLS framework only considers
complete proofs of judgments 〈p−〉 true, whereas traces, associated with proofs of A+ lax and
introduced below in Section 4.2.6, are a proof term assignment for partial proofs. Excepting
the proof term {letT inV }, which we present as part of the concurrent fragment of SLS in
Section 4.2.6 below, the values, terms, and spines that stand for complete proofs will be referred
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Ψ; ∆ `Σ,R V : [A+] – presumes Ψ `Σ,R ∆ stable, and Ψ; C `Σ,R A
+ prop+

∆ matches z:〈A+〉
Ψ; ∆ `Σ,R z : [A+]

id+

Ψ; ∆ `Σ,R N : A−

Ψ; ∆ `Σ,R ↓N : [↓A−]
↓R

Ψ; ∆ `Σ,R N : A−

Ψ; ∆�eph `Σ,R ¡N : [¡A−]
¡R

Ψ; ∆ `Σ,R N : A−

Ψ; ∆�pers `Σ,R !N : [!A−]
!R

∆ matches ·
Ψ; ∆ `Σ,R () : [1]

1R
Ψ; ∆1 `Σ,R V1 : [A+

1 ] Ψ; ∆2 `Σ,R V2 : [A+
2 ]

Ψ; ∆1,∆2 `Σ,R V1 • V2 : [A+
1 • A+

2 ]
•R

Ψ; ∆ `Σ,R t : τ Ψ; ∆ `Σ,R V : [[t/a]A+]

Ψ; ∆ `Σ,R t, V : [∃a:τ.A+]
∃R ∆ matches ·

Ψ; ∆ `Σ,R REFL : t
.
=τ t

.
=R

Figure 4.8: SLS values

Ψ; ∆ `Σ,R R : U – presumes Ψ `Σ,R ∆ stable and U = 〈C−〉 ord

Ψ; Θ{[A−]} `Σ,R Sp : U

Ψ; Θ{{x:A−}} `Σ,R x · Sp : U
focusL

r : A− ∈ Σ Ψ; Θ{[A−]} `Σ,R Sp : U

Ψ; Θ{{·}} `Σ,R r · Sp : U
rule

Figure 4.9: SLS atomic terms

Ψ; ∆ `Σ,R N : A− ord – presumes Ψ `Σ,R ∆ stable and Ψ; C `Σ,R A
− prop−

Ψ; ∆ `Σ,R R : 〈p−〉 ord

Ψ; ∆ `Σ,R R : p− ord
η−

P :: (Ψ;A+,∆)idΨ
=⇒Σ,R (Ψ′; ∆′)σ Ψ′; ∆′ `Σ,R N : σB− ord

Ψ; ∆ `Σ,R λP.N : A+ � B− ord
�R

P :: (Ψ; ∆, A+)idΨ
=⇒Σ,R (Ψ′; ∆′)σ Ψ′; ∆′ `Σ,R N : σB− ord

Ψ; ∆ `Σ,R λP.N : A+ � B− ord
�R

Ψ; ∆ `Σ,R N1 : A−1 ord Ψ; ∆ `Σ,R N2 : A−2 ord

Ψ; ∆ `Σ,R N1 NN2 : A−1 N A−2 ord
NR

Ψ, a:τ ; ∆ `Σ,R N : A− ord

Ψ; ∆ `Σ,R [a].N : ∀a:τ.A− ord
∀R

T :: (Ψ; ∆)idΨ
;∗Σ,R (Ψ′; ∆′)σ′ Ψ′; ∆′ `Σ,R V : [σA+]

Ψ; ∆ `Σ,R {letT inV } : #A+ ord
#R

Figure 4.10: SLS terms
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Ψ; ∆ `Σ,R Sp : U – presumes Ψ `Σ,R ∆ infoc

∆ matches [A−]

Ψ; ∆ `Σ,R NIL : 〈A−〉 ord
id−

Ψ; ∆ `Σ,R V : [A+] Ψ; Θ{[B−]} `Σ,R Sp : U

Ψ; Θ{{∆, [A+ � B−]}} `Σ,R V ; Sp : U
�L

Ψ; ∆ `Σ,R V : [A+] Ψ; Θ{[B−]} `Σ,R Sp : U

Ψ; Θ{{[A+ � B−],∆}} `Σ,R V ; Sp : U
�L

Ψ; Θ{[A−1 ]} `Σ,R Sp : U

Ψ; Θ{{[A−1 N A−2 ]}} `Σ,R π1; Sp : U
NL1

Ψ; Θ{[A−2 ]} `Σ,R Sp : U

Ψ; Θ{{[A−1 N A−2 ]}} `Σ,R π2; Sp : U
NL2

Ψ `Σ,R t : τ [t/a]B− = B′− Ψ; Θ{[B′−]} `Σ,R Sp : U

Ψ; Θ{{[∀a:τ.B−]}} `Σ,R t; Sp : U
∀L

Figure 4.11: SLS spines

to as the deductive fragment of SLS.

SLS values (Figure 4.8) V ::= z | N | ¡N | !N | () | V1 • V2 | t, V | REFL

SLS atomic terms (Figure 4.9) R ::= x · Sp | r · Sp

SLS terms (Figure 4.10) N ::= R | λP.N | N1 NN2 | [a].N | {letT inV }
SLS spines (Figure 4.11) Sp ::= NIL | V ; Sp | π1; Sp | π2; Sp | t; Sp

In contrast to OL3, we distinguish the syntactic categoryR of atomic terms that correspond to
stable sequents. As with patterns, we appear to conflate the proof terms associated with different
proof rules – we have a single λP.N constructor and a single V ; Sp spine rather than one term
λ>N and spine V >Sp associated with propositions A+ � B− and another term λ<N and spine
V <Sp associated with propositions A+ � B−. As with patterns, it is possible to think of
these terms as just having extra annotations (λ> or λ<) that we have omitted. Without these
annotations, proof terms carry less information than derivations, and the rules for values, terms,
and spines in Figures 4.8–4.11 must be seen as typing rules. With these extra implicit annotations
(or, possibly, with some of the technology of bidirectional typechecking), values, terms, and
spines can continue to be seen as representatives of derivations.

Aside from #R and its associated term {letT inV }, which belongs to the concurrent frag-
ment of SLS, there is one rule in Figures 4.8–4.11 that does not have an exact analogues as a rule
in OL3, the rule labeled rule in Figure 4.9. This rule corresponds to an atomic term r · Sp and
accounts for the fact that there is an additional source of persistent facts in SLS, the signature Σ,
that is not present in OL3. To preserve the bijective correspondence between OL3 and SLS proof
terms, we need to place every rule r : A− in the SLS signature Σ into the corresponding OL3 con-
text as a persistent proposition.

As with LF terms, we will use a shorthand for atomic terms x · Sp and r · Sp, writing
(foo t s V V ′) instead of foo · (t; s;V ;V ′; NIL) when we are not concerned with the fact that
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S :: (Ψ; ∆)σ ;Σ,R (Ψ′; ∆′)σ′ – presumes `Σ,R (Ψ; ∆)σ state and Ψ `Σ,R ∆ stable

Ψ; ∆ `Σ,R R : 〈#B+〉 ord P :: (Ψ,Θ{B+})σ =⇒Σ,R (Ψ′; ∆′)σ′

{P} ← R :: (Ψ; Θ{{∆}})σ ;Σ,R (Ψ′; ∆′)σ′

Figure 4.12: SLS steps

T :: (Ψ; ∆)σ ;∗Σ,R (Ψ′; ∆′)σ′ – presumes `Σ,R (Ψ; ∆)σ state and Ψ `Σ,R ∆ stable

� :: (Ψ; ∆)σ ;∗Σ,R (Ψ; ∆)σ

S :: (Ψ; ∆)σ ;Σ,R (Ψ′; ∆′)σ′

S :: (Ψ; ∆)σ ;∗Σ,R (Ψ′; ∆′)σ′

T :: (Ψ1; ∆1)σ1 ;
∗
Σ,R (Ψ2; ∆2)σ2 T ′ :: (Ψ2; ∆2)σ2 ;

∗
Σ,R (Ψ3; ∆3)σ3

T ;T ′ :: (Ψ1; ∆1)σ1 ;
∗
Σ,R (Ψ3; ∆3)σ3

Figure 4.13: SLS traces

atomic terms consist of a variable and a spine.

4.2.6 Steps and traces
The deductive fragment of SLS presented in Figures 4.7–4.11 covers every SLS proposition
except for the lax modality #A+. It is in the context of the lax modality that we will present
proof terms corresponding to partial proofs; we call this fragment the concurrent fragment of
SLS because of its relationship with concurrent equality, described in Section 4.3.

Steps S ::= {P} ← R

Traces T ::= � | T1;T2 | S

A step S = {P} ← x · Sp corresponds precisely to the notion of a synthetic inference rule as
discussed in Section 2.4. A step in SLS corresponds to a use of left focus, a use of the left rule
for the lax modality, and a use of the admissible focal substitution lemma in OL3:

...
Ψ; Θ′{[A−]} ` 〈#B+〉 true

Ψ; Θ′{x:A− true} ` 〈#B+〉 ord
focusL

Ψ′; ∆′ ` σ′A+ lax
...

Ψ; Θ{B+} ` σA+ lax

Ψ; Θ{[#B+]} ` σA+ lax
#L

Ψ; Θ{{Θ′{x:A− ord}}} ` σA+ lax
subst−

The spine Sp corresponds to the complete proof of Ψ; Θ′{[A−]} ` 〈#B+〉 ord , and the pattern
P corresponds to the partial proof from Ψ′; ∆′ ` σ′A+ lax to Ψ; Θ{B+} ` σA+ lax . The typing
rules for steps are given in Figure 4.12. Because we understand these synthetic inference rules as
relations between process states, we call (Ψ; ∆) ;Σ,R (Ψ′; ∆′) a synthetic transition. Traces T
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are monoids over steps – � is an empty trace, S is a trace consisting of a single step, and T1;T2 is
the sequential composition of traces. The typing rules for traces in Figure 4.13 straightforwardly
reflect this monoid structure. Both of the judgments S :: (Ψ; ∆)σ ;Σ,R (Ψ′; ∆′)σ′ and T ::
(Ψ; ∆)σ ;∗Σ,R (Ψ′; ∆′)σ′ work like the rules for patterns, in that the step S or trace T is treated
as an input along with the initial process state (Ψ; ∆)σ, whereas the final process state (Ψ′; ∆′)σ′
is treated as an output.

Steps incorporate left focus and the left rule for #, and let-expressions {letT inV }, which
include traces in deductive terms, incorporate right focus and the right rule for the lax modality
in OL3:

...
Ψ′; ∆′ ` [σ′A+]

Ψ′; ∆′ ` σ′A+ lax
...

Ψ; ∆ ` A+ lax

Ψ; ∆ ` #A+
#R

The trace T represents the entirety of the partial proof from Ψ; ∆ ` A+ lax to Ψ′; ∆′ ` σ′A+ lax
that proceeds by repeated use of steps or synthetic transitions, and the eventual conclusion V
represents the complete proof of Ψ′; ∆′ ` [σ′A+] lax that follows the series of synthetic transi-
tions.

Both of the endpoints of a trace are stable sequents, but it will occasionally be useful to talk
about steps and traces that start from unstable sequents and immediately decompose positive
propositions. We will use the usual trace notation (Ψ; ∆)σ ;∗Σ,R (Ψ′; ∆′)σ′ to describe the type
of these partial proofs. The proof term associated with this type will be written as λP.T , where
P :: (Ψ; ∆)σ =⇒Σ,R (Ψ′′; ∆′′)σ′′ and T :: (Ψ′′; ∆′′)σ′′ ;∗Σ,R (Ψ′; ∆′)σ′ .

4.2.7 Presenting traces
To present traces in a readable way, we will use a notation that interleaves process states among
the steps of a trace, a common practice in Hoare-style reasoning [Hoa71]. As an example, recall
the series of transitions that our money-store-battery-robot system took in Section 2.3.9:

$6 (1)

battery-less robot (1)

turn $6 into a battery
(all you want)

;

battery (1)

battery-less robot (1)

turn $6 into a battery
(all you want)

;

robot (1)

turn $6 into a battery
(all you want)

This evolution can now be precisely captured as a trace in SLS:

(x:〈6bucks〉 eph, f :(battery� #robot) eph, g:(6bucks� #battery) pers)

{y} ← g x;

(y:〈battery〉 eph, f :(battery� #robot) eph, g:(6bucks� #battery) pers)

{z} ← f y

(z:〈robot〉 eph, g:(6bucks� #battery) pers)
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4.2.8 Frame properties
The frame rule is a concept from separation logic [Rey02]. It states that if a property holds of
some program, then the property holds under any extension of the mutable state. The frame rule
increases the modularity of separation logic proofs, because two program fragments that reason
about different parts of the state can be reasoned about independently.

Similar frame properties hold for SLS traces. The direct analogue of the frame rule is the
observation that a trace can always have some extra state framed on to the outside. This is a
generalization of weakening to SLS traces.

Theorem 4.2 (Frame weakening).
If T :: (Ψ; ∆) ;∗Σ,R (Ψ′; ∆′), then T :: (Ψ,Ψ′′; Θ{∆}) ;∗Σ,R (Ψ′,Ψ′′; Θ{∆}).

Proof. Induction on T and case analysis on the first steps of T , using admissible weakening and
the properties of matching constructs at each step.

The frame rule is a weakening property which ensures that new, irrelevant state can can
always be added to a state. Conversely, any state that is never accessed or modified by a trace
can be always be removed without making the trace ill-typed. This property is a generalization
of strengthening to SLS traces.

Theorem 4.3 (Frame strengthening).
If T :: (Ψ; Θ{x:Y lvl}) ;∗Σ,R (Ψ′; Θ′{x:Y lvl}) and x is not free in any of the steps of T , then
T :: (Ψ; Θ{·}) ;∗Σ,R (Ψ′; Θ{·}).

Proof. Induction on T and case analysis on the first steps of T , using a lemma to enforce that,
if x is not free in an individual step, it is either not present in the context of the subderivation (if
lvl = ord or eph) or else it can be strengthened away (if lvl = pers).

4.3 Concurrent equality
Concurrent equality is a notion of equivalence on traces that is coarser than the equivalence
relation we would derive from partial OL3 proofs. Consider the following SLS signature:

Σ = ·, a : prop lin, b : prop lin, c : prop lin, d : prop lin, e : prop lin, f : prop lin,

first : a� #(b • c),

left : b� #d,

right : c� #e,

last : d • e� #f

Under the signature Σ, we can create two traces with the type xa:〈a〉;∗Σ,R xf :〈f〉:

T1 = {xb, xc} ← firstxa;
{xd} ← leftxb;
{xe} ← rightxc;
{xf} ← last (xd • xe)

versus

T2 = {xb, xc} ← firstxa;
{xe} ← rightxc;
{xd} ← leftxb;
{xf} ← last (xd • xe)
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In both cases, there is an xa:〈a〉 resource that transitions to a resource xb:〈b〉 and another resource
xc:〈c〉, and then xb:〈b〉 transitions to xd:〈d〉 while, independently, xc:〈c〉 transitions to xd:〈d〉.
Then, finally, the xd:〈d〉 and xe:〈e〉 combine to transition to xf :〈f〉, which completes the trace.

The independence here is key: if two steps consume different resources, then we want to treat
them as independent concurrent steps that could have equivalently happened in the other order.
However, if we define equivalence only in terms of the α-equivalence of partial OL3 derivations,
the two traces above are distinct. In this section, we introduce a coarser equivalence relation,
concurrent equality, that allows us to treat traces that differ only in the interleaving of indepen-
dent and concurrent steps as being equal. The previous section considered the proof terms of
SLS as a fragment of OL3 better able to talk about partial proofs. The introduction of concur-
rent equality takes a step beyond OL3, because it breaks the bijective correspondence between
OL3 proofs and SLS proofs. As the example above indicates, there are simply more OL3 proofs
than SLS proofs when we quotient the latter modulo concurrent equality and declare T1 and T2

to be (concurrently) equal.
Concurrent equality was first was introduced and explored in the context of CLF [WCPW02],

but our presentation follows the reformulation in [CPS+12], which defines concurrent equiva-
lence based on an analysis of the variables that are used (inputs) and introduced (outputs) by a
given step. Specifically, our strategy will be to take a particular well-typed trace T and define a
set I of pairs of states (S1, S2) with the property that, if S1;S2 is a well-typed trace, then S2;S1

is a concurrently equivalent and well-typed trace. This independency relation allows us to treat
the trace T as a trace monoid. Concurrent equality, in turn, is just α-equality of SLS proof terms
combined with treating {letT inV } and {letT ′ inV } as equivalent if T and T ′ are equivalent
according to the equivalence relation imposed by treating T and T ′ as trace monoids.

This formulation of concurrent equality facilitates applying the rich theory developed around
trace monoids to SLS traces. For example, it is decidable whether two traces T and T ′ are
equivalent as trace monoids, and there are algorithms for determining whether T ′ is a subtrace of
T (that is, whether there exist Tpre and Tpost such that T is equivalent Tpre ;T ′;Tpost ) [Die90]. A
different sort of matching problem, in which we are given T , Tpre , and Tpost and must determine
whether there exists a T ′ such that T is equivalent Tpre ;T ′;Tpost , was considered in [CPS+12].

Unfortunately, the presence of equality in SLS complicates our treatment of independency.
The interface of a step is used to define independency on steps S = ({P} ← R). Two com-
ponents of the interface, the input variables •S and the output variables S• are standard in the
literature on Petri nets – see, for example, [Mur89, p. 553]. The third component, unified vari-
ables ~S, is unique to our presentation.

Definition 4.4 (Interface of a step).
∗ The input variables of a step, denoted •S, are all the LF variables a and SLS variables x

free in the normal term R.
∗ The output variables of a step S = ({P} ← R), denoted by S•, are all the LF variables
a and SLS variables x bound by the pattern P that are not subsequently consumed by a
substitution t/a in the same pattern.
∗ The unified variables of a step, denoted by ~S, are the free variables of a step that are

modified by unification. If t/a appears in a pattern and a is free in the pattern, then t = b
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for some other variable b; both a and b (if the latter is free in the pattern) are included in
the step’s unified variables.

Consider a well-typed trace S1;S2 with two steps. It is possible, by renaming variables bound
in patterns, to ensure that ∅ = •S1 ∩ S2

• = •S1 ∩ S1
• = •S2 ∩ S2

•. We will generally assume
that, in the traces we consider, the variables introduced in each step’s pattern are renamed to be
distinct from the input or output variables of all previous steps.

If S1;S2 is a well-typed trace, then the order of S1 and S2 is fixed if S1 introduces variables
that are used by S2 – that is, if ∅ 6= S1

• ∩ •S2. For example, if S1 = ({xb, xc} ← firstxa) and
S2 = ({xd} ← leftxb), then {xb} = S1

• ∩ •S2, and the two steps cannot be reordered relative
to one another. Conversely, the condition that ∅ = S1

• ∩ •S2 is sufficient to allow reordering in
a CLF-like framework [CPS+12], and is also sufficient to allow reordering in SLS when neither
step contains unified variables (that is, when ∅ = ~S1 = ~S2). The unification driven by equality,
however, can have subtle effects. Consider the following two-step trace:

(a:p, b:p; x:(#(b
.
=p a)) eph, y:(foo b� #(bar a)) eph, z:〈foo a〉 eph)

{b/a} ← x;

(b:p; y:(foo b� #(bar b)) eph, z:〈foo b〉 eph)

{w} ← y z

(b:p; w:〈bar b〉 eph)

This trace cannot be reordered even though ∅ = ∅ ∩ {y, z} = ({b/a} ← x)• ∩ •({w} ← y z),
because the atomic term y z is only well typed after the LF variables a and b are unified. It is
not even sufficient to compare the free and unified variables (requiring that ∅ = ~S1 ∩ •S2), as
in the example above ~({b/a} ← x) = {a, b} and •({w} ← y z) = {y, z} – and obviously
∅ = {a, b} ∩ {y, z}.

The simplest solution is to forbid steps with unified variables from being reordered at all:
we can say that (S1, S2) ∈ I if ∅ = S1

• ∩ •S2 = ~S1 = ~S2. It is unlikely that this condition
is satisfying in general, but it is sufficient for all the examples in this dissertation. Therefore,
we will define concurrent equality on the basis of this simple solution. Nevertheless, three other
possibilities are worth considering; all three are equivalent to this simple solution as far as the
examples given here are concerned.

Restricting open propositions Part of the problem with the example above was that there
were variables free in the type of a transition that were not free in the term. A solution is to
restrict propositions so that negative propositions in the context are always closed relative to
the LF context (or at least relative to the part of the LF context that mentions types subject to
pure variable equality, which would be simple enough to determine with a subordination-based
analysis). This restriction means that a step S = {P} ← R can only have the parameter a
free in R’s type if a is free in R, allowing us to declare that S1 and S2 are reorderable – meaning
(S1, S2) and (S2, S1) are in the independency relation I – whenever ∅ = S1

•∩•S2 = ~S1∩•S2 =
•S1 ∩ ~S2.
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While this restriction would be sufficient for the examples in this dissertation, it would pre-
clude a conjectured extension of the destination-adding transformation given in Chapter 7 to
nested specifications (nested versus flat specifications are discussed in Section 5.1).

Re-typing Another alternative would be to follow CLF and allow any reordering permitted by
the input and output interfaces, but then forbid those that cannot be re-typed. (This was necessary
in CLF to deal with the presence of >.) This is very undesirable, however, because it leads to
strange asymmetries. The following trace would be reorderable by this definition, for example,
but in a symmetric case where the equality was b .

=p a instead of a .
=p b, that would no longer

be the case.

(a:p, b:p; x:(#(a
.
=p b)) eph, y:(∀w. foow� #(barw)) eph, z:〈foo b〉 eph)

{w} ← y b z;

(a:p, b:p; x:(#(a
.
=p b)) eph, w:〈bar a〉 eph)

{b/a} ← x

(b:p; w:〈bar b〉 eph)

Process states with equality constraints A third possible solution is be to change the way we
handle the interaction of process states and unification. In this formulation of SLS, the process
state (Ψ; ∆)σ uses σ to capture the constraints that have been introduced by equality. As an
alternative, we could have process states mention an explicit constraint store of equality propo-
sitions that have been encountered, as in Jagadeesan et al.’s formulation of concurrent constraint
programming [JNS05]. Process states with equality constraints might facilitate talking explic-
itly about the interaction of equality and typing, which in our current formulation is left rather
implicit.

4.3.1 Multifocusing

Concurrent equality is related to the equivalence relation induced by multifocusing [CMS09].
Like concurrent equality, multifocusing imposes a coarser equivalence relation on focused proofs.
The coarser equivalence relation is enabled by a somewhat different mechanism: we are allowed
to begin focus on multiple propositions simultaneously.

Both multifocusing and concurrent equality seek to address the sequential structure of fo-
cused proofs. The sequential structure of a computation needs to be addressed somehow, because
it obscures the fact that the interaction between resources in a focused proof has the structure of a
directed acyclic graph (DAG), not a sequence. We sketch a radically different, vaguely Feynman-
diagram-inspired, way of presenting traces in Figure 4.14. Resources are the edges in the DAG
and steps or synthetic inference rules are the vertexes. (The crossed edges that exchange x2

and x3 are only well-formed because, in our example trace, e and d were both declared to be
ephemeral propositions.) Multifocusing gives a unique normal form to proofs by gathering all
the focusing steps that can be rotated all the way to the beginning, then all the focusing steps
that can happen as soon as those first steps have been rotated all the way to the beginning, etc.
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u1:〈a〉
{v1, w1} ← firstu1

v1:〈b〉 {x1} ← left v1

w1:〈c〉 {y1} ← rightw1

x1:〈d〉

y1:〈e〉

{z1} ← last (x1 • y1)
z1:〈f〉

u2:〈a〉
{v2, w2} ← firstu2

v2:〈b〉 {x2} ← left v2

w2:〈c〉 {y2} ← rightw2

{z2} ← last (x3 • y2)
z2:〈f〉

u3:〈a〉
{v3, w3} ← firstu3

v3:〈b〉 {x3} ← left v3

w3:〈c〉 {y3} ← rightw3

y2:〈e〉

x3:〈d〉

x2:〈d〉

y3:〈e〉

{z3} ← last (x2 • y3)
z3:〈f〉

Figure 4.14: Interaction diagram for a trace (u1:〈a〉, u2:〈a〉, u3:〈a〉) ;∗Σ (z1:〈f〉, z2:〈f〉, z3:〈f〉)

In SLS, by contrast, we are content to represent the DAG structure as a list combined with the
equivalence relation given by concurrent equality.

Multifocusing has only been explored carefully in the context of classical linear logic. We
conjecture that derivations in OL3 with a suitably-defined notion of multifocusing would be in
bijective correspondence with SLS terms modulo concurrent equivalence, at least if we omit
equality. Of course, without a formal notion of multifocusing for intuitionistic logic, this con-
jecture is impossible to state explicitly. The analogy with multifocusing may be able shed light
on our difficulties in integrating concurrent equality and unification of pure variable types, be-
cause multifocusing has an independent notion of correctness: the equivalence relation given by
multifocusing coincides with the the least equivalence relation that includes all permutations of
independent rules in an unfocused sequent calculus proof [CMS09].

4.4 Adequate encoding

In Section 4.1.4 we discussed encoding untyped λ-calculus terms as LF terms of type exp, cap-
tured by the invertible function peq. Adequacy was extended to Linear LF (LLF) by Cervesato
and Pfenning [CP02] and was extended to Ordered LF (OLF) by Polakow [Pol01]. The deductive
fragment of SLS approximately extends both LLF and OLF, and the adequacy arguments made
by Cervesato and Polakow extend straightforwardly to the deductive fragment of SLS. These ad-
equacy arguments do not extend to the systems we want to encode in the concurrent fragment of
SLS, however. The more general techniques we consider in this section will be explored further
in Chapter 9 as a general technique for capturing invariants of SLS specifications.

120



October 15, 2012
DRAFT

The example that we will give to illustrate adequate encoding is the following signature, the
SLS encoding of the push-down automata for parentheses matching from the introduction; we
replace the atomic proposition < with L and the proposition > with R:

ΣPDA = ·, L : prop ord,

R : prop ord,

hd : prop ord,

push : hd • L� #(L • hd),

pop : L • hd • R� #(hd)

We will relate this specification to a push-down automata defined in terms of stacks k and strings
s, which we define inductively:

k ::= · | k<
s ::= · | <s | >s

The transition system defined in terms of the stacks and strings has two transitions:

(k � (<s)) 7→ ((k<)� s)

((k<)� (>s)) 7→ (k � s)

Existing adequacy arguments for CLF specifications by Cervesato et al. [CPWW02] and
by Schack-Nielsen [SN07] have a three-part structure structure. The first step is to define an
encoding function ppk � sqq = ∆ from PDA states k � s to process states ∆, so that, for example,
the PDA state (·<<)� (>>><·) is encoded as the process state

x2:〈L〉 ord , x1:〈L〉 ord , h:〈hd〉 ord , y1:〈R〉 ord , y2:〈R〉 ord , y3:〈R〉 ord , y4:〈L〉 ord

The second step is to prove a preservation-like property: if ppk � sqq ;ΣPDA
∆′, then ∆′ =

ppk′ � s′qq for some k′ and s′. The third step is the main adequacy result: that ppk � sqq ;ΣPDA

ppk′ � s′qq if and only if k � s 7→ k′ � s′.
The second step is crucial in general: without it, we might transition in SLS from the encod-

ing of some k � s to a state ∆′ that is not in the image of encoding. We will take the opportunity
to re-factor Cervesato et al.’s approach, replacing the second step with a general statement about
transitions in ΣPDA preserving a well-formedness invariant. The invariant we discuss is a simple
instance of the well-formedness invariants that we will explore further in Chapter 9.

The first step in our revised methodology is to describe a generative signature ΣGen that
precisely captures the set of process states that encode machine states (Theorem 4.6 below). The
second step is showing that the generative signature ΣGen describes an invariant of the signature
ΣPDA (Theorem 4.7). The third step, showing that ppk � sqq ;ΣPDA

ppk′ � s′qq if and only if
k � s 7→ k′ � s′, is straightforward and follows other developments.

4.4.1 Generative signatures
A critical aspect of any adequacy argument is an understanding of the structure of the relevant
context(s) (the LF context in LF encodings, the substructural context in CLF encodings, both in
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ΣGen = ·, L : prop ord,

R : prop ord,

hd : prop ord,

gen : prop ord,

gen stack : prop ord,

gen string : prop ord,

state : gen� #(gen stack • hd • gen string) G→ Gk hdGs

stack/left : gen stack� #(L • gen stack) Gk → <Gk

stack/done : gen stack� #(1) Gk → ε

string/left : gen string� #(gen string • L) Gs → Gs<

string/right : gen string� #(gen string • R) Gs → Gs>

string/done : gen string� #(1) Gs → ε

Figure 4.15: Generative signature for PDA states and an analogous context-free grammar

SLS encodings). In the statement of adequacy for untyped λ-calculus terms (Section 4.1.4), for
instance, it was necessary to require that the LF context Ψ take the form a1:exp, . . . , an:exp. In
the adequacy theorems that have been presented for deductive logical frameworks, the structure
of the context is quite simple. We can describe a set of building blocks that build small pieces of
the context, and then define the set of valid process states (the world) any process state that can
be built from a particular set of building blocks.

The structure of our PDA is too complex to represent as an arbitrary collection of building
blocks. The process state is organized into three distinct zones:

[ the stack ] [ the head ] [ the string being read ]

We can’t freely generate this structure with building blocks, but we can generate it with a
context-free grammar. Conveniently, context-free grammars characterized within the machin-
ery of SLS itself by describing generative signatures that can generate a set of process states
we are interested in from a single seed context. The signature ΣGen in Figure 4.15 treats all the
atomic propositions of ΣPDA – the atomic propositions L, R and hd – as terminals, and introduces
three nonterminals gen, gen stack, and gen string.

An informal translation of the signature ΣGen as a context-free grammar is given on the right-
hand side of Figure 4.15. Observe that the sentences in the language G encode the states of our
PDA as a string. We will talk much more about generative signatures in Chapter 9.

4.4.2 Restriction
The operation of restriction adapts the concept of “terminal” and “non-terminal” to SLS. Note
that process states ∆ such that (x:〈gen〉 ord) ;∗ΣGen

∆ are only well-formed under the signature
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ΣPDA if they are free of nonterminals; we can define an operation of restriction that filters out the
non-terminal process states by checking whether they are well-formed in a signature that only
declares the terminals.

Definition 4.5 (Restriction).
∗ Ψ�Σ is a total function that returns the largest context Ψ′ ⊆ Ψ such that `Σ Ψ ctx (defined

in Figure 4.3) by removing all the LF variables in Ψ whose types are not well-formed in
the context Σ.
∗ (Ψ; ∆)�Σ is a partial function that is defined exactly when, for every variable declaration
x:T ord or x:T eph in ∆, we have that (Ψ�Σ) `Σ T left (defined in Figure 4.6). When it
is defined, (Ψ; ∆)�Σ = ((Ψ�Σ); ∆′), where ∆′ is ∆ except for the variable declarations
x:T pers in ∆ for which it was not the case that (Ψ�Σ) `Σ T left.
∗ We will also use (Ψ; ∆)�Σ as a judgment which expresses that the function as defined.

Because restriction is only defined if all the ordered and linear propositions in ∆ are well-
formed in Σ; this means that (x:〈gen〉 ord)�ΣPDA

is not defined. Restriction acts as a semi-
permeable membrane on process states: some process states cannot pass through at all, and
others pass through with some of their LF variables and persistent propositions removed. We can
represent context restriction (Ψ; ∆)�Σ = (Ψ′; ∆′) in a two-dimensional notation as a dashed line
annotated with the restricting signature:

(Ψ; ∆)
Σ

(Ψ′; ∆′)

For all process states that evolve from the initial state (x:〈gen〉 ord) under the signature ΣGen ,
restriction to ΣPDA is the identity function whenever it is defined. Therefore, in the statement of
Theorem 4.6, we use restriction as a judgment ∆�ΣPDA

that holds whenever the partial function
is defined.

Theorem 4.6 (Encoding). Up to variable renaming, there is a bijective correspondence between
PDA states k � s and process states ∆ such that T :: (x:〈gen〉 ord) ;∗ΣGen

∆ and ∆�ΣPDA
.

Proof. To establish the bijective correspondence, we first define an encoding function from PDA
states to process states:

∗ ppk � sqq = ppkqq, h:〈hd〉 ord , ppsqq
∗ pp·qq = ·
∗ ppk<qq = ppkqq, x:〈L〉 ord

∗ pp<sqq = y:〈L〉 ord , ppsqq
∗ pp>sqq = y:〈R〉 ord , ppsqq

It is always the case that ppk � sqq�ΣPDA
– the encoding only includes terminals.

It is straightforward to observe that if ppk � sqq = ppk′ � s′qq if an only if k = k′ and
s = s′. The interesting part of showing that context interpretation is an injective function
is just showing that it is a function: that is, showing that, for any k � s, there exists a trace
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T :: (x:〈gen〉 ord) ;∗Gen ppk � sqq. To show that the encoding function is surjective, we must
show that if T :: (x:〈gen〉 ord) ;∗ΣGen

∆ and ∆�ΣPDA
then ∆ = ppk � sqq for some k and s. This

will complete the proof: an injective and surjective function is bijective.

Encoding is injective

We prove that for any k � s, there exists a trace T :: (x:〈gen〉 ord) ;∗Gen ppk � sqq with a series
of three lemmas.

Lemma. For all k, there exists T :: (x:〈gen stack〉 ord) ;∗ΣGen
(ppkqq, x′:〈gen stack〉 ord).

By induction on k.

∗ If k = ·, T = � :: (x:〈gen stack〉 ord) ;∗ΣGen
(x:〈gen stack〉 ord)

∗ If k = k′<, we have T ′ :: (x:〈gen stack〉 ord) ;∗ΣGen
(ppk′qq, x′′:〈gen stack〉 ord) by the

induction hypothesis, so T = (T ′; {x1, x2} ← stack/leftx′) :: (x:〈gen stack〉 ord) ;∗ΣGen

(ppk′qq, x1:〈L〉 ord , x2:〈gen stack〉 ord)

Lemma. For all s, there exists T :: (y:〈gen string〉 ord) ;∗ΣGen
(y′:〈gen string〉 ord , ppsqq).

By induction on s.

∗ If s = ·, T = � :: (y:〈gen string〉 ord) ;∗ΣGen
(y:〈gen string〉 ord)

∗ If s = <s′, we have T ′ :: (y:〈gen string〉 ord) ;∗ΣGen
(y′:〈gen string〉 ord , pps′qq) by the

induction hypothesis, so T = (T ′; {y1, y2} ← string/left y′) :: (y:〈gen string〉 ord) ;∗ΣGen

(y1:〈gen string〉 ord , y2:〈L〉 ord , pps′qq)
∗ If s = >s′, we have T ′ :: (y:〈gen string〉 ord) ;∗ΣGen

(y′:〈gen string〉 ord , pps′qq) by the in-
duction hypothesis, so T = (T ′; {y1, y2} ← string/right y′) :: (y:〈gen string〉 ord) ;∗ΣGen

(y1:〈gen string〉 ord , y2:〈R〉 ord , pps′qq)

Lemma. For all k and s, there exists T :: (g:〈gen〉 ord) ;∗ΣGen
(ppk � sqq).

By straightforward construction using the first two lemmas and frame weakening (Theorem 4.2):

(g:〈gen〉 ord)

{x, h, y} ← state g;

(x:〈gen stack〉 ord , h:〈hd〉 ord , y:〈gen string〉 ord)

Tk; (given by the first lemma and frame weakening)
(ppkqq, x′:〈gen stack〉 ord , h:〈hd〉 ord , y:〈gen string〉 ord)

{()} ← stack/donex′

(ppkqq, h:〈hd〉 ord , y:〈gen string〉 ord)

Ts; (given by the second lemma and frame weakening)
(ppkqq, h:〈hd〉 ord , y′:〈gen string〉 ord , ppsqq)

{()} ← string/done y′

(ppkqq, h:〈hd〉 ord , ppsqq)

= ppk � sqq
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Encoding is surjective

We prove that if T :: (x:〈gen〉 ord) ;∗ΣGen
∆ and ∆�ΣPDA

then ∆ = ppk � sqq for some k and s
with a series of two lemmas.

Lemma. If T :: (ppkqq, x:〈gen stack〉 ord , h:〈hd〉 ord , y:〈gen store〉 ord , ppsqq) ;∗ΣGen
∆ and

∆�ΣPDA
, then ∆ = ppk′ � s′qq for some k′ and s′.

By induction on the structure of T and case analysis on the first steps in T . Up to concurrent
equality, there are four possibilities:

∗ T = ({()} ← stack/donex; {()} ← string/done y) – this is a base case, and we can finish
by letting k′ = k and s′ = s.
∗ T = ({x1, x2} ← stack/leftx;T ′) – apply the ind. hyp. (letting x = x2, k = k<).
∗ T = ({y1, y2} ← string/left y;T ′) – apply the ind. hyp. (letting y = y1, s = <s).
∗ T = ({y1, y2} ← string/right y;T ′) – apply the ind. hyp. (letting y = y1, s = >s).

The proof above takes a number of facts about concurrent equality for granted. For example,
the trace T = ({()} ← stack/donex; {y1, y2} ← string/right y;T ′) does not syntactically match
any of the traces above if we do not account for concurrent equality. Modulo concurrent equality,
on the other hand, T = ({y1, y2} ← string/right y; {()} ← stack/donex;T ′), matching the last
branch of the case analysis. If we didn’t implicitly rely on concurrent equality in this way, the
resulting proof would have twice as many cases. We will take these finite uses of concurrent
equality for granted when we specify that a proof proceeds by case analysis on the first steps of
T (or, conversely, by case analysis on the last steps of T ).

Lemma. If T :: (g:〈gen〉 ord) ;∗ΣGen
∆ and ∆�ΣPDA

, then ∆ = ppk′ � s′qq for some k′ and s′.

This is a corollary of the previous lemma, as it can only be the case that T = {x, h, y} ←
state g;T ′. We can apply the previous lemma to T ′, letting k = s = ·. This establishes that
encoding is a surjective function, which in turn completes the proof.

Theorem 4.6 establishes that the generative signature ΣGen describes a world – a set of
SLS process states – that precisely corresponds to the states of a push-down automata. We can
(imperfectly) illustrate the content of this theorem in our two-dimensional notation as follows,
where ∆⇔ k � s indicates the presence of a bijection:

(x:〈gen〉 ord)

∗

ΣGen

∆
ΣPDA

∆⇔
k � s

It is interesting to note how the proof of Theorem 4.6 takes advantage of the associative
structure of traces: the inductive process that constructed traces in the first two lemmas treated
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trace composition as left-associative, but the induction we performed on traces in the next-to-last
lemma treated trace composition as right-associative.

4.4.3 Generative invariants
The generative signature ΣGen precisely captures the world of SLS process states that are in the
image of the encoding ppk � sqq of PDA states as process states. In order for the signature ΣPDA

to encode a reasonable notion of transition between PDA states, we need to show that steps in this
signature only take encoded PDA states to encoded PDA states. Because the generative signature
ΣGen precisely captures the process states that represent encoded PDA states, we can describe
and prove this property without reference to the actual encoding function:

Theorem 4.7 (Preservation). If T1 :: (x:〈gen〉 ord) ;∗ΣGen
∆1, ∆1�ΣPDA

, and S :: ∆1 ;ΣPDA

∆2, then T2 :: (x:〈gen〉 ord) ;∗ΣGen
∆2.

If we illustrate the given elements as solid lines and elements that we have to prove as dashed
lines, the big picture of the encoding and preservation theorems is the following:

(x:〈gen〉 ord)

∗

ΣGen

∆

∆⇔
k � s

(x:〈gen〉 ord)

∗

ΣGen

∆′

ΣPDA
∆′

The proof of Theorem 4.7 relies on two lemmas, which we will consider before the proof itself.
They are both inversion lemmas: they help uncover the structure of a trace based on the type of
that trace. Treating traces modulo concurrent equality is critical in both cases.

Lemma. Let ∆ = Θ{x:〈gen stack〉 ord , h:〈hd〉 ord , y:〈gen string〉 ord}. If T :: ∆ ;∗ΣGen

∆′ and ∆′�ΣPDA
, then T = (T ′; {()} ← stack/donex′; {()} ← string/done y′), where T ′ ::

∆ ;∗ΣGen
Θ′{x′:〈gen stack〉 ord , h:〈hd〉 ord , y′:〈gen string〉 ord} and ∆′ = Θ′{h:〈hd〉 ord}. Or,

as a picture:

∆ = Θ{x:〈gen stack〉 ord , h:〈hd〉 ord , y:〈gen string〉 ord}

∗

T

∆′

= T ′

{()} ← stack/donex′

{()} ← string/done y′

∗
Θ′{x′:〈gen stack〉 ord , h:〈hd〉 ord , y′:〈gen string〉 ord}

Θ′{h:〈hd〉 ord , y′:〈gen string〉 ord}

∆′ = Θ′{h:〈hd〉 ord}
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Proof. By induction on the structure of T and case analysis on the first steps in T . Up to concur-
rent equality, there are five possibilities:

∗ T = ({()} ← stack/donex; {()} ← string/done y). Immediate, letting T ′ = �.
∗ T = ({x1, x2} ← stack/leftx;T ′′). By the induction hypothesis (where the new frame in-

corporates x1:〈L〉 ord ), we have T ′′ = (T ′′′; {()} ← stack/donex; {()} ← string/done y).
Let T ′ = ({x1, x2} ← stack/leftx;T ′′′).
∗ T = ({y1, y2} ← string/left y;T ′′). By the induction hypothesis (where the new frame in-

corporates y1:〈L〉 ord ), we have T ′′ = (T ′′′; {()} ← stack/donex; {()} ← string/done y).
Let T ′ = ({x1, x2} ← string/left y;T ′′′).
∗ T = ({y1, y2} ← string/right y;T ′′). By the induction hypothesis (where the new frame

incorporates y2:〈R〉 ord ), we have T ′′ = (T ′′′; {()} ← stack/donex; {()} ← string/done y).
Let T ′ = ({x1, x2} ← string/right y;T ′′′).
∗ T = (S;T ′′), where x and y are not free in S. By the induction hypothesis, we have
T ′′ = (T ′′′; {()} ← stack/donex; {()} ← string/done y). Let T ′ = (S;T ′′′). (This case
will not arise in the way we use this lemma, but the statement of the theorem leaves open
the possibility that there are other nonterminals in Θ.)

This completes the proof.

A corollary of this lemma is that if T :: (g:〈gen〉 ord) ;∗ΣGen
∆ and ∆�ΣPDA

, then T =
(T ′; {()} ← stack/donex; {()} ← string/done y) – modulo concurrent equality, naturally –
where T ′ :: (g:〈gen〉 ord) ;∗ΣGen

Θ{x′:〈gen stack〉 ord , h:〈hd〉 ord , y′:〈gen string〉 ord} and
∆ = Θ{h:〈hd〉 ord}. To prove the corollary, we observe that T = ({x, h, r} ← state g ;T ′′)
and apply the lemma to T ′′.

Lemma. The following all hold:
∗ If T :: (g:〈gen〉 ord) ;∗ΣGen

Θ{x1:〈L〉 ord , x2:〈gen stack〉 ord},
then T = (T ′; {x1, x2} ← stack/leftx′) for some x′.
∗ If T :: (g:〈gen〉 ord) ;∗ΣGen

Θ{y1:〈gen string〉 ord , y2:〈L〉 ord},
then T = (T ′; {y1, y2} ← string/left y′) for some y′.
∗ If T :: (g:〈gen〉 ord) ;∗ΣGen

Θ{y1:〈gen string〉 ord , y2:〈R〉 ord},
then T = (T ′; {y1, y2} ← string/right y′) for some y′.

To give the last of the three statements as a picture:

∗

T

g:〈gen〉 ord

Θ′{y1:〈gen string〉 ord , y2:〈R〉 ord}

=
∗

T ′

g:〈gen〉 ord

{y1, y2} ← string/right y′
Θ′{y′:〈gen string〉 ord}

Θ′{y1:〈gen string〉 ord , y2:〈R〉 ord}

Proof. The proofs are all by induction on the structure of T and case analysis on the last steps in
T ; we will prove the last statement, as the other two are similar. Up to concurrent equality, there
are two possibilities:
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∗ T = (T ′; {y1, y2} ← string/right y′) – Immediate.
∗ T = (T ′′;S), where y1 and y2 are not among the input variables •S or the output vari-

ables S•. By the induction hypothesis, T ′′ = (T ′′′; {y1, y2} ← string/right y′). Let
T ′ = (T ′′;S).

This completes the proof.

Note that we do not consider any cases where T = (T ′; {y′1, y2} ← string/right y′) (for y1 6=
y′1), T = (T ′; {y′1, y2} ← string/right y′) (for y2 6= y′2), or (critically) where T = (T ′; {y1, y

′
2} ←

string/left y′). There is no way for any of these traces to have the correct type, which makes the
resulting case analysis quite simple.

Proof of Theorem 4.7 (Preservation). By case analysis on the structure of S.

Case 1: S = {x′, h′} ← push (h • y), which means that we are given the following generative
trace in ΣGen :

(g:〈gen〉 ord)

T

Θ{h:〈hd〉 ord , y:〈L〉 ord}

and we must construct a trace (g:〈gen〉 ord) ;∗ΣGen
Θ{x′:〈L〉 ord , h′:〈hd〉 ord}. Changing h to

h′ is just renaming a bound variable, so we have

(g:〈gen〉 ord)

T ′

Θ{h′:〈hd〉 ord , y:〈L〉 ord}

The corollary to the first inversion lemma above on T ′ gives us

T ′ = (g:〈gen〉 ord)

T ′′;

Θ{xg:〈gen stack〉 ord , h′:〈hd〉 ord , yg:〈gen string〉 ord , y:〈L〉 ord}
{()} ← stack/donexg;

{()} ← string/done yg

Θ{h′:〈hd〉 ord , y:〈L〉 ord}

The second inversion lemma (second part) on T ′′ gives us

T ′′ = (g:〈gen〉 ord)

T ′′′;

Θ{xg:〈gen stack〉 ord , h′:〈hd〉 ord , y′g:〈gen string〉 ord}
{yg, y} ← string/left y′g;

Θ{xg:〈gen stack〉 ord , h′:〈hd〉 ord , yg:〈gen string〉 ord , y:〈L〉 ord}
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Now, we can construct the trace we need using T ′′′:

(g:〈gen〉 ord)

T ′′′;

Θ{xg:〈gen stack〉 ord , h′:〈hd〉 ord , y′g:〈gen string〉 ord}
{x′, x′g} ← stack/leftxg;

Θ{x′:〈L〉 ord , x′g:〈gen stack〉 ord , h′:〈hd〉 ord , y′g:〈gen string〉 ord}
{()} ← stack/donex′g;

{()} ← string/done y′g

Θ{x′:〈L〉 ord , h′:〈hd〉 ord}

Case 2: S = {h′} ← pop (x • h • y), which means that we are given the following generative
trace in ΣGen :

(g:〈gen〉 ord)

T

Θ{x:〈L〉 ord , h:〈hd〉 ord , y:〈R〉 ord}

and we must construct a trace (g:〈gen〉 ord) ;∗ΣGen
Θ{h′:〈hd〉 ord}. Changing h to h′ is just

renaming a bound variable, so we have

(g:〈gen〉 ord)

T ′

Θ{x:〈L〉 ord , h′:〈hd〉 ord , y:〈R〉 ord}

The corollary to the first inversion lemma above on T ′ gives us

T ′ = (g:〈gen〉 ord)

T ′′;

Θ{x:〈L〉 ord , xg:〈gen stack〉 ord , h′:〈hd〉 ord , yg:〈gen string〉 ord , y:〈R〉 ord}
{()} ← stack/donexg;

{()} ← string/done yg

Θ{x:〈L〉 ord , h′:〈hd〉 ord , y:〈R〉 ord}

The second inversion lemma (first part) on T ′′ gives us

T ′′ = (g:〈gen〉 ord)

T ′′′;

Θ{x′g:〈gen stack〉 ord , h′:〈hd〉 ord , yg:〈gen string〉 ord , y:〈R〉 ord}
{x, xg} ← stack/leftx′g;

Θ{x:〈L〉 ord , xg:〈gen stack〉 ord , h′:〈hd〉 ord , yg:〈gen string〉 ord , y:〈R〉 ord}
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The second inversion lemma (third part) on T ′′′ gives us

T ′′′ = (g:〈gen〉 ord)

T ′′′′;

Θ{x′g:〈gen stack〉 ord , h′:〈hd〉 ord , y′g:〈gen string〉 ord}
{yg, y} ← string/right y′g;

Θ{x′g:〈gen stack〉 ord , h′:〈hd〉 ord , yg:〈gen string〉 ord , y:〈R〉 ord}

Now, we can construct the trace we need using T ′′′′:

(g:〈gen〉 ord)

T ′′′′;

Θ{x′g:〈gen stack〉 ord , h′:〈hd〉 ord , y′g:〈gen string〉 ord}
{()} ← stack/donex′g;

{()} ← string/done y′g

Θ{h′:〈hd〉 ord}

These two cases represent the only two synthetic transitions that are possible under the signature
ΣPDA, so we are done.

Theorem 4.7 establishes that the generative signature ΣGen is a generative invariant of the
signature ΣPDA. We consider theorems of this form further in Chapter 9, but they all essentially
follow the structure of Theorem 4.7. First, we enumerate the synthetic transitions associated with
a given signature. Second, in each of those cases, we use the type of the synthetic transition to
perform inversion on the structure of the given generative trace. Third, we construct a generative
trace that establishes the fact that the invariant was preserved.

4.4.4 Adequacy of the transition system

The hard work of adequacy is established by the preservation theorem; the actual adequacy
theorem is just an enumeration in both directions.

Theorem 4.8 (Adequacy). ppk � sqq;ΣPDA
ppk′ � s′qq if and only if k � s 7→ k′ � s′.

Proof. Both directions can be established by case analysis on the structure of k and s.

As an immediate corollary of this theorem and preservation (Theorem 4.7), we have the
stronger adequacy property that ppk � sqq ;ΣPDA

∆′, then ∆′ = ppk′ � s′qq for some k and s′

such that k � s 7→ k′ � s′. In our two-dimensional notation, the complete discussion of adequacy
for SLS is captured by the following picture:
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↓A− = A #A+ = {A} λa.t = \a.t

¡A− = $A A+ � B− = A >-> B foo t1 . . . tn = foo t1...tn

!A− = !A A+ � B− = A ->> B

1 = one A− NB− = A & B Πa:τ.ν = Pi x.nu

A+ •B+ = A * B ∀a.τ.A− = All x.A τ → ν = tau -> nu

∃a.τ.A+ = Exists x.A ¡A−� B− = A -o B bar t1 . . . tn = bar t1...tn

t
.
=τ s = t == s !A−� B− = A -> B

Figure 4.16: Mathematical and ASCII representations of propositions, terms, and classifiers

(x:〈gen〉 ord)

∗

ΣGen

∆

∆⇔
k � s

(x:〈gen〉 ord)

∗

ΣGen

∆′

ΣPDA
∆′⇔

k′ � s′

4.5 The SLS implementation
The prototype implementation of SLS contains a parser and typechecker for the SLS language,
and is available from https://github.com/robsimmons/sls. Code that is checked by
this prototype implementation will appear frequently in the rest of this document, always in a
fixed-width font.

The checked SLS code differs slightly from mathematical SLS specifications in a few ways
– the translation between the mathematical notation we use for SLS propositions and the ASCII
representation used in the implementation is outlined in Figure 4.16. Following CLF and the
Celf implementation, we write the lax modality #A in ASCII as {A} – recall that in Section 4.2
we introduced the {A+} notation from CLF as a synonym for Fairtlough and Mendler’s #A+.
The exponential ¡A doesn’t have an ASCII representation, so we write $A when A is mobile.
Upshifts and downshifts are always inferred: this means that we can’t write down ↑↓A or ↓↑A,
but neither of these OL3 propositions are part of the SLS fragment anyway.

The SLS implementation also supports conventional abbreviations for arrows that we won’t
use in mathematical notation: ¡A− � B− can be written as A -o B or $A >-> B in the
SLS implementation, and !A− � B− can be written as A -> B or !A >-> B. This final
proposition is ambiguous, because X -> Y can be an abbreviation for !X � Y or Πa:X.Y , but
SLS can figure out whether the proposition or classifier was intended by analyzing the structure
of Y. Also note that we could have just as easily made A -o B an abbreviation for $A ->> B,
but we had to pick one and the choice absolutely doesn’t matter. All arrows can also be written
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backwards: B <-< A is equivalent to A >-> B, B o- A is equivalent to A -o B, and so on.
Also following traditional conventions, upper-case variables that are free in a rule will be

treated as implicitly quantified. Therefore, the line

rule: foo X <- (bar Y -> baz Z).

will be reconstructed as the SLS declaration

rule : ∀Y :τ1.∀Z:τ2.∀X:τ3. !(!bar Y � bazZ)� fooX

where the implementation infers the types τ1, τ2, and τ3 appropriately from the declarations of the
negative predicates foo, bar, and baz. The type annotation associated with equality is similarly
inferred.

Another significant piece of syntactic sugar introduced for the sake of readability is less con-
ventional, if only because positive atomic propositions are not conventional. If P is a persistent
atomic proposition, we can optionally write !P wherever P is expected, and if P is a linear
atomic proposition, we can write $P wherever P is expected. This means that if a, b, and c
are (respectively) ordered, linear, and persistent positive atomic propositions, we can write the
positive proposition a • b • c in the SLS implementation as (a * b * c), (a * $b * c),
(a * b * !c), or (a * $b * !c). Without these annotations, it is difficult to tell at a
glance which propositions are ordered, linear, or persistent when a signature uses more than one
proposition. When all of these optional annotations are included, the rules in a signature that uses
positive atomic propositions look the same as rules in a signature that uses the pseudo-positive
negative atomic propositions described in Section 4.7.1.

In the code examples given in the remainder of this document, we will use these optional
annotations in a consistent way. We will omit the optional $A annotations only in specifications
with no ordered atomic propositions, and we will omit the optional !A annotations in specifica-
tions with no ordered or linear atomic propositions. This makes the mixture of different expo-
nentials explicit while avoiding the need for rules like ($a * $b * $c >-> {$d * $e})
when specifications are entirely linear (and likewise when specifications are entirely persistent).

4.6 Logic programming
One logic programming interpretation of CLF was explored by the Lollimon implementation
[LPPW05] and adapted by the Celf implementation [SNS08, SN11]. Logic programming in-
terpretations of SLS are not a focus this dissertation, but we will touch on a few points in this
section.

Logic programming is important because it provides us with operational intuitions about
the intended behavior of the systems we specify in SLS. One specific set of these intuitions
will form the basis of the operationalization transformations on SLS specifications considered in
Chapter 6. Additionally, logic programming intuitions are relevant because they motivated the
design of SLS, in particular the presentation of the concurrent fragment in terms of partial, rather
than complete, proofs. We discuss this point in Section 4.6.2.

132



October 15, 2012
DRAFT

4.6.1 Deductive computation and backward chaining

Deductive computation in SLS is the search for complete proofs of sequents of the form Ψ; ∆ `
〈p−〉 true. A common form of deductive computation is goal-directed search, or what Andreoli
calls the proof construction paradigm [And01]. In SLS, goal-directed search for the proof of a
sequent Ψ; ∆ ` 〈p−〉 true can only proceed by focusing on a proposition like ↓p−n � . . . �
↓p−1 � p− which has a head p− that matches the succedent. This replaces the goal sequent
Ψ; ∆ ` 〈p−〉 true with n subgoals: Ψ; ∆1 ` 〈p−1 〉 true . . . Ψ; ∆n ` 〈p−n 〉 true, where ∆ matches
∆1, . . . ,∆n.

When goal-directed search only deals with the unproved subgoals of a single coherent deriva-
tion at a time, it is called backward chaining, because we’re working backwards from the goal
we want to prove.3 The term top-down logic programming is also used, and refers to the fact
that, in the concrete syntax of Prolog, the rule ↓p−n � . . .� ↓p−1 � p− would be written with
p− on the first line, p−1 on the second, etc. This is exactly backwards from a proof-construction
perspective, as we think of backward chaining as building partial proofs from the bottom up, the
root towards the leaves, so we will avoid this terminology.

The backward-chaining interpretation of intuitionistic logics dates back to the work by Miller
et al. on uniform proofs [MNPS91]. An even older concept, Clark’s negation-as-failure [Cla87],
is based on a partial completeness criteria for logic programming interpreters. Partial correct-
ness demands that if the interpreter reports that it has found a proof of a goal-directed sequent,
such a proof should exist. Partial completeness, on the other hand, demands that if the inter-
preter gives up up on finding a proof, no proof should exist. (The interpreter is also allowed
to run forever without succeeding or giving up.) Partial completeness requires backtracking in
backward-chaining search: if we we try to prove Ψ; ∆ ` 〈p−〉 true by focusing on a particular
proposition and one of the resulting subgoals fails to be provable, we have to consider any other
propositions that could have been used to prove the sequent before giving up. Backtracking can
be extremely powerful in certain cases and incredibly expensive in others, and so most logic
programming languages have an escape hatch that modifies or limits backtracking at the user’s
discretion, such as the Prolog cut (no relation to the admissible rule cut) or Twelf’s determinis-
tic declarations. Non-backtracking goal-oriented deductive computation is called flat resolution
[AK99].

One feature of backward chaining and goal directed search is that it usually allows for terms
that are not completely specified – these unspecified pieces are are traditionally called logic
variables. Because LF variables are also “logic variables,” the literature on λProlog and Twelf
calls unspecified pieces of terms existential variables, but as they bear no relation to the variables
introduced by the left rule for ∃a:τ.A+, that terminology is also unhelpful here. Consider the

3The alternative is to try and derive the same sequent in multiple ways simultaneously, succeeding whenever
some way of proving the sequent is discovered. Unlike backward chaining, this strategy of breadth-first search is
complete: if a proof exists, it will be found. Backward chaining as we define it is only nondeterministically or
partially complete, because it can fail to terminate when a proof exists. We will call this alternative to backtracking
breadth-first theorem proving, as it amounts to taking a breadth-first, instead of depth-first, view of the so-called
failure continuation [Pfe12a].
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following SLS signature:

ΣAdd = ·, nat : type, z : nat, s : nat→ nat,

plus : nat→ nat→ nat→ prop,

plus/z : ∀N :nat. (plus zN N),

plus/s : ∀N :nat.∀M :nat.∀P :nat. !(plusN M P )� (plus (sN)M (sP ))

In addition to searching for a proof of plus (s z) (s z) (s (s z)) (which will succeed, as 1 + 1 = 2)
or searching for a proof of plus (s z) (s z) (s (s (s z))) (which will fail, as 1 + 1 6= 3), we can
use goal-oriented deductive computation to search for plus (s z) (s z)X , where X represents an
initially unspecified term. This search will succeed, reporting that X = (s (s z)). Unification
is generally used in backward-chaining logic programming languages as a technique for imple-
menting partially unspecified terms, but this implementation technique should not be confused
with our use of unification-based equality t .= s as a proposition in SLS.

We say that plus in the signature above is a well-moded predicate with mode (plus + +−),
because whenever we perform deductive computation to derive (plusnmp) where n and m are
fully specified, any unspecified portion of p must be fully specified in any completed derivation.
Well-moded predicates can be treated as nondeterministic partial functions from their inputs (the
indices marked “+” in the mode) to their outputs (the indices marked “−” in the mode). A
predicate can sometimes be given more than one mode: (plus +−+) is a valid mode for plus,
but (plus +−−) is not.

The implementation of backward chaining in substructural logic has been explored by Hodas
[HM94], Polakow [Pol00, Pol01], Armelı́n and Pym [AP01], and others. Efficient implementa-
tion of these languages is complicated by the problem of resource management. In linear logic
proof search, it would be technically correct but highly inefficient to perform proof search by
enumerating the ways that a context can be split and then backtracking over each possible split.
Resource management allows the interpreter to avoid this potentially exponential backtracking,
but describing resource management and proving it correct, especially for richer substructural
logics, can be complex and subtle [CHP00].

The term deductive computation is meant to be interpreted very broadly, and goal-directed
search is not the only form of deductive computation. Another paradigm for deductive compu-
tation is the inverse method, where the interpreter attempts to prove a sequent Ψ; ∆ ` 〈p−〉 true
by creating and growing database of sequents that are derivable, attempting to build the appro-
priate derivation from the leaves down. The inverse method is generally associated with theorem
proving and not logic programming. However, Chaudhuri, Pfenning, and Price have shown that
that deductive computation with the inverse method in a focused linear logic can simulate both
backward chaining and forward chaining (considered below) for persistent Horn-clause logic
programs [CPP08].

Figure 4.17 gives an taxonomy (incomplete and imperfect) of the forms of deductive com-
putation mentioned in this section. Note that, while we will generally use backward chaining to
describe backtracking search, backward chaining does not always imply full backtracking and
partial completeness. This illustration, and the preceding discussion, leaves out many important
categories, especially tabled logic programming, and many potentially relevant implementation
choices, such as breath-first versus depth-first or parallel exploration of the success continuation.
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Deductive computation
Search for complete derivations Ψ; ∆ ` U

maintains sets of
subgoal sequents

maintains sets of
derivable sequents

goal-directed search

depth-first breadth-first

backward chaining

backtracking committed-choice

backward chaining flat resolution

breadth-first theorem proving

inverse method theorem proving

Figure 4.17: A rough taxonomy of deductive computation

4.6.2 Concurrent computation

Concurrent computation is the search for partial proofs of sequents. As the name suggests, in
SLS concurrent computation is associated with the search for partial proofs of the judgment
A+ lax , which correspond to traces (Ψ; ∆) ;∗ (Ψ′; ∆′).

The paradigm we will primarily associate with concurrent computation is forward chaining,
which implies that we take an initial process state (Ψ; ∆) and allow it to evolve freely by the ap-
plication of synthetic transitions. Additional conditions can be imposed on forward chaining: for
instance, synthetic transitions like (∆, x:〈p+

pers〉 pers) ; (∆, x:〈p+
pers〉 pers , y:〈p+

pers〉 pers) that
do not meaningfully change the state can be excluded (if a persistent proposition already exists,
two copies of that proposition don’t add anything).4 Forward chaining with this restriction in a
purely-persistent logic is strongly associated with the Datalog language and its implementations;
we will refer to forward chaining in persistent logics as saturating logic programming in Chap-
ter 8. Forward chaining does not always deal with partially-unspecified terms; when persistent
logic programming languages support forward chaining with partially-unspecified terms, it is
called hyperresolution [FLHT01].

The presence of ephemeral or ordered resources in substructural logic means that a process
state may evolve in multiple mutually-incompatible ways. Committed choice is a version of
forward chaining that never goes back and reconsiders alternative evolutions from the initial state.
Just as the default interpretation of backward chaining includes backtracking, we will consider
the default interpretation of forward chaining to be committed choice, following [LPPW05].
An alternative interpretation would consider multiple evolutionary paths, which is a version of
exhaustive search. Trace computation that works backwards from a final state instead of forward
from an initial state can also be considered, and planning can be seen as specifying both the
initial and final process states and trying to extrapolate a trace between them by working in both

4Incidentally, Lollimon implements this restriction and Celf, as of version 2.9, does not.
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directions.
Outside of this work and Saurin’s work on Ludics programming [Sau08], there is not much

work on explicitly characterizing and searching for partial proofs in substructural logics.5 Other
forms of computation can be characterized as trace computation, however. Multiset rewriting and
languages like GAMMA can be partially or completely understood in terms of forward chaining
in linear logic [CS09, BG96], and the ordered aspects of SLS allow it to capture fragments of
rewriting logic. Rewriting logic, and in particular the Maude implementation of rewriting logic
[CDE+11], implements the committed choice interpretation and exhaustive search interpreta-
tions, as well as a model checking interpretation that characterize sets of process states or traces
using logical formulas. Constraint handling rules [BRF10] and concurrent constraint program-
ming [JNS05] are other logic programming models can be characterized as forms of concurrent
computation.

4.6.3 Integrating deductive and trace computation
In the logic programming interpretation of CLF used by Lollimon and Celf, backtracking back-
ward chaining is associated with the deductive fragment, and committed-choice forward chaining
is associated with the lax modality. We will refer to an adaptation of the Lollimon/Celf semantics
to SLS as LCI (“Lollimon/Celf Interpreter”) for brevity in this section.

Forward chaining and backward chaining have an uneasy relationship in LCI. Consider the
following SLS signature:

ΣDemo = ·, posA : prop ord, posB : prop ord, posC : prop ord, negD : prop,

fwdruleAB : posA� #posB,

fwdruleAC : posA� #posC,

bwdrule : (posA� #posB)� negD

In an empty context, there is only one derivation of negD under this signature: it is rep-
resented by the proof term bwdrule (λx. {let {y} ← fwdruleABx in y}). The partially complete
interpretation of backward chaining stipulates that an interpreter tasked with finding a proof of
negD should either find this proof or never terminate, but LCI only admits this interpretation for
purely deductive proofs. To see why, consider backward-chaining search attempting to prove
negD in a closed context. This can only be done with the rule bwdrule, generating the subgoal
posA� #posB. At this point, LCI will switch from backward chaining to forward chaining and
attempt to satisfy this subgoal by constructing a trace (x:〈posA〉 ord) ; (y:〈posB〉 ord).

There are two nontrivial traces in this signature starting from the process state (x:〈posA〉 ord)
– the first is ({y} ← fwdruleABx) :: (x:〈posA〉 ord) ; (y:〈posB〉 ord), and the second is
({y} ← fwdruleACx) :: (x:〈posA〉 ord) ; (y:〈posC〉 ord). Forward chaining can plausibly
come up with either one, and if it happens to derive the second one, the subgoal fails. LCI then
tries to backtrack to find other rules that can prove the conclusion negD, but there are none, so
LCI will report that it failed to prove negD.

5As such, “concurrent computation,” while appropriate for SLS, may or may not prove to be a good name for
the general paradigm.
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This example indicates that it is difficult to make backward chaining (in its default backtrack-
ing form) reliant on committed-choice forward chaining (in its default committed-choice form)
in the style of Lollimon or Celf. Either we can restrict forward chaining to confluent systems
(excluding ΣDemo) or else we can give up on the usual partially complete interpretation of back-
ward chaining. In the other direction, however, it is entirely natural to make forward chaining
dependent upon backward chaining. The fragment of CLF that encodes this kind of computation
was labeled the semantic effects fragment by DeYoung [DP09]. At the logical level, the semantic
effects fragment of SLS removes the right rule for #A+, which corresponds to the proof term
{letT inV }. As discussed in Section 4.2.6, these let-expressions are the only point where traces
are included into the language of deductive terms.

4.7 Design decisions
Aside from ordered propositions, there are several significant differences between the framework
SLS presented in this chapter and the existing logical framework CLF, including the presence of
positive atomic propositions, the introduction of traces as an explicit notation for partial proofs,
the restriction of the term language to LF, and the presence of equality t .=τ s as a proposition.
In this section, we will discuss design choices that were made in terms of each of these features,
their effects, and what choices could have been made differently.

4.7.1 Pseudo-positive atoms
Unlike SLS, the CLF framework does not include positive atomic propositions. Positive atomic
propositions make it easy to characterize the synthetic transitions associated with a particular
rule. For example, if foo, bar, and baz are all linear atomic propositions, then the presence of
a rule somerule : (foo • bar� #baz) in the signature is associated with synthetic transitions
of the form (Ψ; ∆, x:〈foo〉 eph, y:〈bar〉 eph) ; (Ψ; ∆, z:〈baz〉 eph). The presence of the rule
somerule enables steps of this form, and every step made by focusing on the rule has this form.

CLF has no positive propositions, so the closest analogue that we can consider is where
foo, bar, and baz are negative propositions, and the rule ¡foo • ¡bar � #(¡baz) appears in the
signature. Such a rule is associated with synthetic transitions of the form (Ψ; ∆,∆1,∆2) ;
(Ψ; ∆, z:baz ord) such that Ψ; ∆1�eph ` 〈foo〉 true and Ψ; ∆2�eph ` 〈bar〉 true. In SLS, it is a
relatively simple syntactic criterion to enforce that a sequent like Ψ; ∆1 ` 〈foo〉 true can only be
derived if ∆1 matches x:foo; we must simply ensure that there are no propositions of the form
. . . � foo or . . . � foo in the signature or context. (In fact, this is essentially the SLS version
of the subordination criteria that allows us to conclude that an LF type was only inhabited by
variables in Section 4.2.) Note that, in full OL3, this task would not be so easy: we might prove
〈foo〉 true indirectly by forward chaining. This is one reason why association of traces with the
lax modality is so important!

When it is the case that Ψ; ∆1 ` 〈foo〉 true can only be derived if ∆1 matches x:foo, we can
associate the rule ¡foo•¡bar� #(↓(¡baz)) with the synthetic transition (Ψ; ∆, x:foo lvl , y:bar lvl ′) ;
(Ψ; ∆, z:〈baz〉 eph) under the condition that neither lvl or lvl ′ are ord . Negative atomic propo-
sitions that can only be concluded when they are the sole member of the context, like foo and

137



October 15, 2012
DRAFT

bar in this example, can be called pseudo-positive. Pseudo-positive atoms can actually be used
a bit more generally than SLS’s positive atomic propositions. A positive atomic proposition is
necessarily associated with one of the three judgments ord , eph, or pers , but pseudo-positive
propositions can associate with any of the contexts. This, incidentally, gives pseudo-positive
atoms in CLF or SLS the flavor of positive atomic propositions under Andreoli’s atom optimiza-
tion (Section 2.5.1).

It is, of course, possible to consistently associate particular pseudo-positive propositions with
particular modalities, which means that pseudo-positive propositions can subsume the positive
propositions of SLS. The tradeoff between positive and pseudo-positive propositions could be
resolved either way. By including positive atomic propositions, we made SLS more complicated,
but in a local way – we needed a few more kinds and a few more rules. On the other hand, if we
used pseudo-positive propositions, the notion of synthetic transitions would be intertwined with
the subordination-like analysis that enforces their correct usage.

4.7.2 The need for traces

One of the most important differences between SLS and its predecessors, especially CLF, is that
traces are treated as first-class syntactic objects. This allows us to talk about partial proofs and
thereby encode our earlier money-store-battery-robot example as a trace with this type:

(x:〈6bucks〉 eph, f :(battery� #robot) eph, g:(6bucks� #battery) pers)

;∗ (z:〈robot〉 eph, g:(6bucks� #battery) pers)

It is also possible to translate the example from Chapter 2 as a complete proof of the following
proposition:

6bucks • ¡(battery� #robot) • !(6bucks� #battery)� #robot

Generally speaking, we can try to represent a trace T :: (Ψ; ∆) ;∗ (Ψ′; ∆′) as a closed de-
ductive proof λP. {letT inV } of the proposition (∃Ψ. •∆) � #(∃Ψ′. •∆),6 where the pattern
P re-creates the initial process state (Ψ; ∆) and all the components of the final state are captured
in the value V . The problem with this approach is that the final proposition is under no partic-
ular obligation to faithfully capture the structure of the final process state. This can be seen in
the example above: to actually capture the structure of the final process state, we should have
concluded robot • !(6bucks� #battery) instead of simply robot. It is also possible to conclude
any of the following:

1. robot • !(6bucks� #battery) • !(6bucks� #battery), or

2. robot • ↓(6bucks� #battery) • ¡(6bucks� #battery), or even

3. robot • ¡(6bucks • !(battery� #robot)� #robot) • ↓(robot� #robot).

6The notation •∆ fuses together all the propositions in the context. For example, if ∆ = w:〈p+
eph〉 eph •

x:A− ord , y:B− eph, z:C− pers , then •∆ = p+
eph • ↓A− • ¡B− • !C−. The notation ∃Ψ.A+ turns all the bindings

in the context Ψ = a1:τ1, . . . , an:τn into existential bindings ∃a1:τ1 . . . ∃an:τn.A
+.

138



October 15, 2012
DRAFT

The problem with encoding traces as complete proofs, then, is that values cannot be forced to
precisely capture the structure of contexts, especially when there are no variables or persistent
propositions. Cervesato and Scedrov approach this problem by severely restricting the logic and
changing the interpretation of the existential quantifier so that it acts like a nominal quantifier on
the right [CS09]. The introduction of traces allows us to avoid similar restrictions in SLS.

Despite traces being proper syntactic objects, they are not first-class concepts in the theory:
they are derived from focused OL3 terms and interpreted as partial proofs. Because hereditary
substitution, identity expansion, and focalization are only defined on complete OL3 proofs, these
theorems and operations only apply by analogy to the deductive fragment of SLS; they do not
apply to traces. In joint work with Deng and Cervesato, we considered a presentation of logic
that treats process states and traces as first-class concepts and reformulates the usual properties
of cut and identity in terms of coinductive simulation relations on process states [DCS12]. We
hope that this work will eventually lead to a better understanding of traces, but the gap remains
quite large.

4.7.3 LF as a term language
The decision to use LF as a first-order domain of quantification rather than using a fully-dependent
system is based on several considerations. First and foremost, this choice was sufficient for our
purposes here. In fact, for the purposes of this dissertation, we could have used an even sim-
pler term language of simply-typed LF [Pfe08]. Two other logic programming interpretations of
SLS-like frameworks, Lollimon [LPPW05] and Ollibot [PS09], are in fact based on simply-typed
term languages. Canonical LF and Spine Form LF are, at this point, sufficiently well understood
that the additional overhead of fully dependently-typed terms is not a significant burden, and
there are many examples beyond the scope of this dissertation where dependent types are useful.

On a theoretical level, it is a significant simplification when we restrict ourselves to any typed
term language with a reasonable notion of equality and simultaneous substitution. The concep-
tual priority in this chapter is clear: Section 4.1 describes LF terms, Section 4.2 describes proof
terms as a fragment of focused OL3, and Section 4.3 describes a coarser equivalence on proof
terms, concurrent equality. If the domain of first-order of quantification was SLS terms, these
three considerations would be mutually dependent – we would need to characterize concurrent
equality before presenting the logic itself. For the purposes of showing that a logical framework
can be carved out from a focused logic – the central thesis of this and the previous two chapters
– it is easiest to break this circular dependency. We conjecture that this complication is no great
obstacle, but our approach avoids the issue.

On a practical level, there are advantages to using a well-understood term language. The
SLS prototype implementation (Section 4.5) uses the mature type reconstruction engine of Twelf
to reconstruct LF terms. Schack-Nielsen’s implementation of type reconstruction for Celf is
complicated by the requirements of dealing with type reconstruction for a substructural term
language, a completely orthogonal consideration [SNS08].

Finally, it is not clear that the addition of full CLF-like dependency comes with great expres-
sive benefit. In LF and Twelf, the ability to use full dependent types is critical in part because it
allows us to express metatheorems – theorems about the programming languages and logics we
have encoded, like progress and preservation for a programming language or cut admissibility for
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a logic. Substructural logical frameworks like LLF and CLF, in contrast, have not been success-
ful in capturing metatheorems with dependent types. Instead, metatheorems about substructural
logics have thus far generally been performed in logical frameworks based on persistent logics.
Crary proved theorems about linear logics and languages in LF using the technique of explicit
contexts [Cra10]. Reed was able to prove cut admissibility for linear logic and preservation for
the LLF encoding of Mini-ML in HLF, a persistent extension to LF that uses an equational theory
to capture the structure of substructural contexts [Ree09a].
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Chapter 5

On logical correspondence

In Part I, we defined SLS, a logical framework of substructural logical specifications. For the
purposes of this dissertation, we are primarily interested in using SLS as a framework for spec-
ifying the operational semantics of programming languages, especially stateful and concurrent
programming languages. This is not a new idea: one of the original case studies on CLF spec-
ification described the semantics of Concurrent ML [CPWW02] in a specification style termed
substructural operational semantics, or SSOS, by Pfenning [Pfe04].

The design space of substructural operational semantics is extremely rich, and many styles
of SSOS specification have been proposed previously. It is therefore helpful to have design
principles that allow us to both classify different styles of presentation and predict what style(s)
we should adopt based on what our goals are. In this chapter, we sketch out a classification
scheme for substructural operational semantics based on three major specification styles:
∗ The natural semantics, or big-step operational semantics, is an existing and well-known

specification style (and not a substructural operational semantics). It is convenient for the
specification of pure programming languages.

∗ The ordered abstract machine semantics is a generalization of abstract machine semantics
that can be naturally specified in SLS; this specification style naturally handles stateful and
parallel programming language features [PS09].

∗ The destination-passing semantics is the style of substructural operational semantics first
explored in CLF by Cervesato et al. [CPWW02]. It allows for the natural specification of
features that incorporate communication and non-local transfer of control.

Each of these three styles is, in a very formal sense, more expressive than the last: there are
automatic and provably-correct transformations from the less expressive styles (natural seman-
tics and ordered abstract machines) to the more expressive styles (ordered abstract machines
and destination-passing, respectively). Our investigation of provably-correct transformations on
SLS specifications therefore justifies our classification scheme for SSOS specifications. We call
this idea the logical correspondence, and it is the focus of this refinement of our central thesis:

Thesis (Part II): A logical framework based on a rewriting interpretation of sub-
structural logic supports many styles of programming language specification. These
styles can be formally classified and connected by considering general transforma-
tions on logical specifications.
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In this introductory chapter, we will outline our use of logical correspondence and connect it
to previous work. The development of the logical correspondence as presented in this chapter,
as well as the operationalization and defunctionalization transformations presented in the next
chapter, represent joint work with Ian Zerny.

5.1 Logical correspondence
As stated above, we will primarily discuss and connect three different styles that are used for
specifying the semantics of programming languages. The two styles of SSOS semantics, ordered
abstract machines and destination-passing semantics, are considered because they do a good job
of subsuming existing work on substructural operational semantics, a point we will return to at
the end of this section. We consider natural semantics, a high-level, declarative style of spec-
ification that was inspired by Plotkin’s structural operational semantics (SOS) [Plo04, Kah87],
because natural semantics specifications are the easiest style to connect to substructural oper-
ational semantics. While we hope to extend the logical correspondence to other specification
styles, such extensions are outside the scope of this dissertation.

While Kahn et al. defined the term broadly, natural semantics has been consistently connected
with the big-step operational semantics style discussed in the introduction, where the judgment
e ⇓ v expresses that the the expression e evaluates to the value v:

λx.e ⇓ λx.e ev/lam
e1 ⇓ λx.e e2 ⇓ v2 [v2/x]e ⇓ v

e1 e2 ⇓ v
ev/app

Early work on natural semantics emphasized a dual interpretation of specifications. The pri-
mary interpretation of natural semantics specifications was operational. Natural semantics were
implemented in the (non-logical) specification framework TYPOL that compiled natural seman-
tics specifications into Prolog programs; the backward-chaining Prolog interpreter then gave an
operational semantics to the specification [CDD+85]. It is also possible to view natural seman-
tics specifications as inductive definitions; this interpretation allows proofs about terminating
evaluations to be performed by induction over the structure of a natural semantics derivation
[CDDK86].

The operational interpretation of natural semantics assigns a more specific meaning to expres-
sions than the inductive definition does. For example, the rule ev/app as an inductive definition
does not specify whether e1 or e2 should be evaluated in some particular order or in parallel;
the TYPOL-to-Prolog compiler could have reasonably made several choices in such a situation.
More fundamentally, the logic programming interpretation inserts semantic information into to a
natural semantics specification that is not present when we view the specification as an inductive
definition (though it might be just as accurate to say that the logic programming interpretation
preserves meaning that is lost when the specification is viewed as an inductive definition). The
interpretation of the rules above as an inductive definition does not allow us to distinguish non-
termination (searching forever for a v such that e ⇓ v) from failure (concluding finitely that there
is no v such that e ⇓ v). The logic programming interpreter, on the other hand, will either suc-
ceed, run forever, or give up, thereby distinguishing two cases that are indistinguishable when
the specification is interpreted as an inductive definition.
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Figure 5.1: Major transformations on SLS specifications

We will present a transformation from SLS-encoded natural semantics specifications into
ordered abstract machines by a transformation called operationalization. The basic idea of oper-
ationalization is to model backward-chaining logic programming (in the sense of Section 4.6.1)
as forward-chaining logic programming (in the sense of Section 4.6.2). The transformation rei-
fies and exposes the internal structure of backward-chaining search, making evaluation order
and parallelism explicit. That exposed structure, in turn, enables us to reason about the differ-
ence between non-termination and failure. In turn, ordered abstract machine specifications can
be transformed into destination-passing specifications by a transformation called destination-
adding, which reifies and exposes control flow information that is implicit in the ordered context
of an ordered abstract machine. Destination-passing specifications can then be transformed into
a collecting semantics by approximation, which lets us obtain program analyses like control flow
analysis. The operationalization and destination-adding transformations have been implemented
within the SLS prototype. Approximation, on the other hand, requires significant input from the
user and so is less reasonable to implement as an automatic transformation.

These major transformations are presented graphically in Figure 5.1 in terms of the three
classification styles – natural semantics, ordered abstract machines, and destination-passing –
discussed above. There are many other smaller design decisions that can be made in the cre-
ation of a substructural operational semantics, two of which are represented in this figure. One
distinction, destination-passing with linear continuations versus persistent continuations, has to
do with whether it is possible to return to a previous point a programs execution structure and is
discussed, along with first-class continuations, in Section 7.2.4.

Another distinction is between nested and flat specifications. This distinction applies to all
concurrent SLS specifications, not just those that specify substructural operational semantics.
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x1:〈p2(c)〉 ord , x2:〈p1(c)〉 ord , x3:(∀x. p1(x)� {p2(x)� {p3(x)}}) ord , x4:(p3(c)� {p4}) ord
; x1:〈p2(c)〉 ord , x5:(p2(c)� {p3(c)}) ord , x4:(p3(c)� {p4}) ord

; x6:〈p3(c)〉 ord , x4:(p3(c)� {p4}) ord
; x7:〈p4〉 ord

Figure 5.2: Evolution of a nested SLS process state

Flat specifications include rewriting rules (p1 • . . . • pn� {q1 • . . . • qm}) where the head of
the rule {q1 • . . . • qm} contains only atomic propositions. Nested SLS specifications, on the
other hand, contain rules in the conclusions of rules; when the rule fires, the resulting process
state contains the rule. A rule A+ � {B+} in the context can only fire if a piece of the con-
text matching A+ appears to its left, so (x:〈p1(c)〉, y:(p1(c)� {p2(c)}) ord) ; (z:〈p2(c)〉),
whereas (y:(p1(c)� {p2(c)}) ord , x:〈p1(c)〉) 6;. Another example of the evolution of a pro-
cess state with nested rules is given in Figure 5.2. (Appendix A gives a summary of the notation
used for process states.) The choice of nested versus flat specification does not impact expres-
siveness, but it does influence our ability to read specifications (opinions differ as to which style
is clearer), as well as our ability to reason about specifications. The methodology of describing
the invariants of substructural logical specifications with generative signatures, which we intro-
duced in Section 4.4 and which we will consider further in Chapter 9, seems better-adapted to
describing the invariants of flat specifications.

Other distinctions between SSOS specifications can be understood in terms of nondetermin-
istic choices that can be made by the various transformations we consider. For example, the
operationalization transformation can produce ordered abstract machines that evaluate subcom-
putations in parallel or in sequence. In general, one source specification (a natural semantics or
an ordered abstract machine specification) can give rise to several different target specifications
(ordered abstract machine specifications or destination-passing specifications). The correctness
of the transformation then acts as a simple proof of the equivalence of the several target spec-
ifications. (The prototype implementations of these transformations only do one thing, but the
nondeterministic transformations we prove correct would justify giving the user a set of ad-
ditional controls – for instance, the user could make the operationalization transformation be
tail-call-optimizing or not and parallelism-enabling or not.)

The nondeterministic choices that transformations can make give us a rigorous vocabulary
for describing choices that otherwise seem unmotivated. An example of this can be found in
the paper that introduced the destination-adding and approximation transformations [SP11a].
In that article, we had to motivate an ad hoc change to the usual abstract machine semantics.
In this dissertation, by the time we encounter a similar specification in Chapter 8, we will be
able to see that this change corresponds to omitting tail-recursion optimization in the process of
operationalization.

Our taxonomy does a good job of capturing the scope of existing work on SSOS specifica-
tions. Figure 5.3 shows previous published work on SSOS specifications mapped onto a version
of the diagram from Figure 5.1. With the possible exception of certain aspects of the SSOS pre-
sentation in Pfenning’s course notes [Pfe12e], the taxonomy described above captures the scope
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of previous work.
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[CPWW02]
[SN07]

Increasing expressiveness

Figure 5.3: Classification of existing work on SSOS specifications

5.2 Related work
This part of the dissertation draws from many different sources of inspiration. In this section, we
survey this related work and, where applicable, outline how our use of logical correspondence
differs from existing work.

Partiality in deductive computation

The genesis of the operationalization transformation discussed in Chapter 6 can be found in
the treatment of the operational semantics of LF in Tom Murphy VII’s dissertation [Mur08];
this treatment can be seen as a synthesis of the operational interpretation of natural semantics
explored in Clément’s et al.’s early work on natural semantics in TYPOL and the approach to
theorem proving pioneered by Twelf [PS99b].

In his dissertation, Murphy described a natural semantics for Lambda 5, a distributed pro-
gramming language, and encoded that specification in Twelf. He then wanted to interpret that
natural semantics as an operational semantics for Lambda 5 in the style of Clément et al., which
is a natural application of Twelf’s logic program interpretation [MP92]. However, Murphy also
wanted to prove a safety property for his language in Twelf, and the usual approach to theorem
proving in Twelf involves treating specifications as inductive definitions. As discussed above,
natural semantics do not distinguish non-termination (which is safe) from failure (which indi-
cates underspecification and is therefore unsafe).

Theorem proving in Twelf involves interpreting proofs as backward chaining logic programs
that do not backtrack (recall that we called this the flat resolution interpretation in Section 4.6.1).
Murphy was able to use the checks Twelf performs on proofs to describe a special purpose par-
tiality directive. If a logic program passed his series of checks, Murphy could conclude that
well-moded, flat resolution would never fail and never backtrack, though it might diverge. This
check amounted to a proof of safety (progress and preservation) for the operational interpretation
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of his natural semantics via flat resolution. It seems that every other existing proof of safety1 for
a big-step operational semantics is either classical (like Leroy and Grall’s approach, described
below) or else depends on a separate proof of equivalence with a small-step operational seman-
tics.

Murphy’s proof only works because his formulation of Lambda 5 was intrinsically typed,
meaning that, using the facilities provided by LF’s dependent types, he enforced that only well-
typed terms could possibly be evaluated. (His general proof technique should apply more gen-
erally, but it would take much more work to express the check in Twelf.) The operationalization
transformation is a way to automatically derive a correct small-step semantics from the big-step
semantics by making the internal structure of a backward chaining computation explicit as a
specification in the concurrent fragment of SLS. Having made this structure accessible, we can
explicitly represent complete, unfinished, and stuck (or failing) computations as concurrent traces
and reason about these traces with a richer set of tools than the limited set Murphy successfully
utilized.

A coinductive interpretation
Murphy proved safety for a natural semantics specification by recovering the original operational
interpretation of natural semantics specifications as logic programs and then using Twelf’s facili-
ties for reasoning about logic programs. Leroy and Grall, in [LG09], suggest a novel coinductive
interpretation of natural semantics specifications. Coevaluation e ⇓co v is defined as the greatest
fixed point of the following rules:

λx.e ⇓co λx.e
e1 ⇓co λx.e e2 ⇓co v2 [v2/x]e ⇓co v

e1 e2 ⇓co v

Aside from the co annotation and the different interpretation, these rules are syntactically identi-
cal to the natural semantics above that were implicitly given an inductive interpretation.

Directly reinterpreting the inductive specification as a coinductive specification doesn’t quite
produce the right result in the end. For some diverging terms like ω = (λx. x x) (λx. x x), we
can derive ω ⇓co e for any expression e, including expressions that are not values and expres-
sions with no relation to the original term. Conversely, there are diverging terms Div such that
Div ⇓co e is not derivable for any e.2 As a result, Leroy and Grall also give a coinductive defini-
tion of diverging terms e ⇓∞ that references the inductively-defined evaluation judgment e ⇓ v:

e1 ⇓∞

e1 e2 ⇓∞
e1 ⇓ v1 e2 ⇓∞

e1 e2 ⇓∞
e1 ⇓ λx. e e2 ⇓ v2 [v2/x]e ⇓∞

e1 e2 ⇓∞

Now diverging expressions are fully characterized as derivations for which e ⇓∞ is derivable with
an infinite derivation tree. With this definition, Leroy and Grall prove a type safety property: if e
has type τ , then either e ⇓ v or e ⇓∞. However, the disjunctive character of this theorem means

1Progress in particular is the theorem of concern: proving preservation for a big-step operational semantics is
straightforward.

2Leroy and Grall discuss a counterexample due to Filinski: Div = YFx, where Y is the fixed-point combinator
λf. (λx. f (λv. (xx) v)) (λx. f (λv. (xx) v)) and F is λf. λx. (λg. λy. g y) (f x) [LG09].
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that a constructive proof of type safety would be required to take a typing derivation e : τ as
input and produce as output either a proof of termination e ⇓ v or a proof of divergence e ⇓∞.
This implies that a constructive type safety theorem would need to decide termination, and so it
is unsurprising that type safety is proved classically by Leroy and Grall.

We suggest that the operationalization transformation, seen as a logical extension to Mur-
phy’s methodology, is superior to the coinductive (re)interpretation as a way of understanding the
behavior of diverging evaluations in the natural semantics. Both approaches reinterpret natural
semantics in an operational way, but the operationalization transformation gives us a satisfactory
treatment of diverging terms without requiring the definition of an additional coinductive judg-
ment e ⇓∞. And even with the addition of the coinductively defined judgment e ⇓∞, coinductive
big-step operational semantics have significant issues handling nondeterministic languages, a
point that we will elaborate on in Section 6.4.

The functional correspondence
The ordered abstract machine that results from our operationalization transformation corresponds
to a standard abstract machine model (a statement that is made precise Section 6.3). In this sense,
the logical correspondence has a great deal in common with the functional correspondence of
Ager, Danvy, Midtgaard, and others [ABDM03, ADM04, ADM05, Dan08, DMMZ12].

The goal of the functional correspondence is to encode various styles of semantic specifica-
tions (natural semantics, abstract machines, small-step structural operational semantics, environ-
ment semantics, etc.) as functional programs. It is then possible to show that these styles can
be related by off-the-shelf and fully correct transformations on functional programs. The largest
essential difference between the functional and logical correspondences, then, is that the func-
tional correspondence acts on functional programs, whereas the logical correspondence acts on
specifications encoded in a logical framework (in our case, the logical framework SLS).

The functional correspondence as given assumes that semantic specifications are adequately
represented as functional programs; the equivalence of the encoding and the “on paper” se-
mantics is an assumed prerequisite. In contrast, by basing the logical correspondence upon the
SLS framework, we make it possible to reason formally and precisely about adequate representa-
tion by the methodology outlined in Section 4.4. The functional correspondence also shares some
of the coinductive reinterpretation’s difficulties in dealing with nondeterministic and parallel ex-
ecution. The tools we can use to express the semantics are heavily influenced by the semantics
of the host programming language, and so the specifics of the host language can make it dra-
matically more or less convenient to encode nondeterministic or parallel programming language
features.

Transformation on specifications
Two papers by Hannan and Miller [HM92] and Ager [Age04] are the most closely related to
our operationalization transformation. Both papers propose operationalizing natural semantics
specifications as abstract machines by provably correct and general transformations on logical
specifications (in the case of Hannan and Miller) or on specifications in the special-purpose
framework of L-attributed natural semantics (in the case of Ager). A major difference in this

149



October 15, 2012
DRAFT

case is that both lines of work result in deductive specifications of abstract machines. Our trans-
lation into the concurrent fragment of SLS has the advantage of exploiting parallelism, and also
opens up specifications to the modular inclusion of stateful and concurrent features, as we will
foreshadow in Section 5.3 below and discuss further in Section 6.5.

The transformation we call defunctionalization in Section 6.2, as well as its inverse, refunc-
tionalization, makes appearances throughout the literature under various names. The transfor-
mation is not strictly analogous to Reynold’s defunctionalization transformations on functional
programs [Rey72], but it is based upon the same idea: we take an independently transitioning
object like a function (or, in our case, negative propositions in the process state) and turn it into
data and an application function. In our case, the data is a positive atomic proposition in the
process state and the application function is a rule in the signature that explains how the positive
atomic proposition can participate in transitions. The role of defunctionalization within our work
on the logical correspondence is very similar to the role of Reynold’s defunctionalization within
work on the functional correspondence [Dan08]. Defunctionalization is related to the process of
representing a process calculus object in the chemical abstract machine [BB90]. It is also related
to a transformation discussed by Miller in [Mil02] in which new propositions are introduced and
existentially quantified locally in order to hide the internal states of processes.

The destination-adding transformation described in Section 7.1 closely follows the contours
of work by Morrill, Moot, and Piazza on translating ordered logic into linear logic [Mor95,
MP01]. That work is, in turn, based on van Benthem’s relational models of ordered logic [vB91].
Their transformations handle a more uniform logical fragment, whereas the transformation we
describe handles a specific (though useful) fragment of the much richer logic of SLS proposi-
tions.

Related work for program analyses methodology covered in Chapter 8 is discussed further in
Section 8.6.

Abstract machines in substructural logic
With the exception of our encodings of natural semantics, all our work on the logical corre-
spondence takes place in the concurrent (rewriting-like) fragment of SLS. This is consistent with
the tradition of substructural operational semantics, but there is another tradition of encoding
abstract machines in substructural logical frameworks using frameworks that can be seen as de-
ductive fragments of SLS. The resulting logical specifications are functionally similar to the
big-step abstract machine specifications derived by Hannan and Miller, but like SSOS specifica-
tions they can take advantage of the substructural context for the purpose of modular extension
(as discussed in the next section).

This line of work dates back to Cervesato and Pfenning’s formalization of Mini-ML with ref-
erences in Linear LF [CP02]; a mechanized preservation property for this specification was given
by Reed [Ree09a]. An extension to this technique, which uses Polakow’s Ordered LF to repre-
sent control stacks, is presented by Felty and Momigliano and used to mechanize a preservation
property [FM12]. Both these styles of deductive big-step specification are useful for creating
language specifications that can be modularly extended with stateful and control features, but
neither does a good job with modular specification of concurrent or parallel features.

Both of these specifications should be seen as different points in a larger story of logical
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Figure 5.4: Using the logical correspondence for modular language extension

correspondence that we are only beginning to explore in this dissertation. The use of the ordered
context in Felty and Momigliano’s specification, in particular, is exactly analogous to the non-
parallel ordered abstract machines in Chapter 6. We therefore posit the existence of a general
transformation, similar to operationalization, that connects the two.

5.3 Transformation and modular extension
All the related work described in the previous section is concerned with correspondence. That
is, the authors were interested in the process of transforming natural semantics into abstract
machines and in the study of abstract machines that are in the image of this translation. It
is possible to view the logical correspondence in the same light, but that is not how logical
correspondence will be used in this document. Indeed, it is not our intent to advocate strongly
for the use of natural semantics specifications at all; recall that natural semantics were used to
illustrate problems with non-modularity in language specification in Section 1.2.

Instead, we will view the transformations illustrated as arrows in Figure 5.1 in an expressly di-
rected fashion, operationalizing natural semantics as ordered abstract machines and transforming
ordered abstract machines into destination-passing semantics without giving too much thought
to the opposite direction. In the context of this dissertation, the reason that transformations
are important is that they expose more of the semantics to manipulation and modular exten-
sion. The operationalization transformation in Chapter 7 exposes the order of evaluation, and the
SLS framework then makes it possible to modularly extend the language with stateful features:
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this is exactly what we demonstrated in Section 1.2 and will demonstrate again in Section 6.5.
The destination-adding transformation exposes the control structure of programs; this makes it
possible to discuss first-class continuations as well as the interaction of parallelism and failure
(though not necessarily at the same time, as discussed in Section 7.2.4). The control structure
exposed by the destination-adding transformation is the basis of the control flow analysis in
Chapter 8.

In the next three chapters that make up Part II of this dissertation, we will present natural
semantics specifications and substructural operational semantics specifications in a number of
styles. We do so with the confidence that these specifications can be automatically transformed
into the “lowest common denominator” of flat destination-passing specifications. Certainly, this
means that we should be unconcerned about using a higher-level style such as the ordered ab-
stract machine semantics, or even natural semantics, when that seems appropriate. If we need the
richer structure of destination-passing semantics later on, the specification can be automatically
transformed. Using the original, high-level specifications, the composition of different language
features may appear to be a tedious and error-prone process of revision, but after transforma-
tion into the lowest-common-denominator specification style, composition can be performed by
simply concatenating the specifications.

Taking this idea to its logical conclusion, Appendix B presents the hybrid operational se-
mantics specification mapped out in Figure 5.4. Individual language features are specified at the
highest-level specification style that is reasonable and then automatically transformed into a sin-
gle compatible specification by the transformations implemented in the SLS prototype. In such
a specification, a change to a high-level feature (turning call-by-value functions to call-by-name
functions, for instance) can be made at the level of natural semantics and then propagated by
transformation into the common (destination-passing style) specification.
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Chapter 6

Ordered abstract machines

This chapter centers around two transformations on logical specifications. Taken together, the
operationalization transformation (Section 6.1) and the defunctionalization transformation (Sec-
tion 6.2) allow us to establish the logical correspondence between the deductive SLS specification
of a natural semantics and the concurrent SLS specification of an abstract machine.

Natural semantics specifications are common in the literature, and are also easy to encode
in either the deductive fragment of SLS or in a purely deductive logical framework like LF. We
will continue to use the natural semantics specification of call-by-value evaluation for the lambda
calculus as a running example:

λx.e ⇓ λx.e ev/lam
e1 ⇓ λx.e e2 ⇓ v2 [v2/x]e ⇓ v

e1 e2 ⇓ v
ev/app

Natural semantics are a big-step semantics: the judgment e ⇓ v describes the relationship be-
tween an initial expression e and the value v to which it will eventually evaluate.

The alternative to a big-step semantics is a small-step semantics, which describes the rela-
tionship between one intermediate state of a computation and another intermediate state after a
single transition. One form of small-step semantics is a structural operational semantics (SOS)
specification [Plo04]. The SOS specification of call-by-value evaluation for the lambda calculus
is specified in terms of two judgments: v value, which expresses that v is a value that is not ex-
pected to make any more transitions, and e1 7→ e2, which expresses that e1 transitions to e2 by
reducing a β-redex.

λx.e value

e1 7→ e′1
e1 e2 7→ e′1 e2

e1 value e2 7→ e′2
e1 e2 7→ e1 e

′
2

v value

(λx.e)v 7→ [v/x]e

Abstract machine semantics are another important small-step semantics style. The most well-
known abstract semantics is almost certainly Landin’s SECD machine [Lan64], though our ab-
stract machine presentation below is much closer to Danvy’s SC machine from [Dan03] and
Harper’s K{nat⇀} system from [Har12, Chapter 27]. This abstract machine semantics is de-
fined in terms of states s. The state s = k � e represents the expression e being evaluated on
top of the stack k, and the state s = k � v represents the value v being returned to the stack
k. Stacks k are have the form ((. . . (halt; f1); . . .); fn) – they are left-associative sequences of

153



October 15, 2012
DRAFT

frames f terminated by halt, where halt� e is the initial state in the evaluation of e and halt� v
is a final state that has completed evaluating to a value v. Each frame f either has the form
2 e2 (an application frame waiting for an evaluated function to be returned to it) or the form
(λx.e)2 (an application frame with an evaluated function waiting for an evaluated value to be
returned to it). Given states, stacks, and frames, we can define a “classical” abstract machine for
call-by-value evaluation of the lambda calculus as a transition system with four transition rules:

absmachine/lam: k � λx.e 7→ k � λx.e

absmachine/app: k � e1 e2 7→ (k;2 e2)� e1

absmachine/app1: (k;2 e2)� λx.e 7→ (k; (λx.e)2)� e2

absmachine/app2: (k; (λx.e)2)� v2 7→ k � [v2/x]e

The operational intuition for these rules is precisely the same as the operational intuition for
the rewriting rules given in Section 1.2. This is not coincidental: the SLS specification from
the introduction adequately encodes the transition system s 7→ s′ defined above, a point that we
will make precise in Section 6.3. The SLS specification from the introduction is also the result
of applying the operationalization and defunctionalization transformations to the SLS encoding
of the natural semantics given above. Therefore, these two transformations combined with the
adequacy arguments at either end constitute a logical correspondence between natural semantics
and abstract machines.

As discussed in Section 5.3, it is interesting to put existing specification styles into logical
correspondence, but that is not our main reason for investigating logical correspondence in the
context of this thesis. Rather, we are primarily interested in exploring the set of programming
language features that can be modularly integrated into a transformed SLS specification and that
could not be integrated into a natural semantics specification in a modular fashion. In Section 6.5
we explore a selection of these features, including mutable storage, call-by-need evaluation, and
recoverable failure.

6.1 Logical transformation: operationalization
The intuition behind operationalization is rather simple: we examine the structure of backward
chaining and then specify that computational process as an SLS specification. Before presenting
the general transformation, we will motivate this transformation using our natural semantics
specification of call-by-value evaluation.

The definition of e ⇓ v is moded with e as an input and v as an output, so it is meaningful
to talk about being given e and using deductive computation to search for a v such that e ⇓ v is
derivable. Consider a recursive search procedure implementing this particular deductive compu-
tation:

∗ If e = λx.e′, it is possible to derive λx.e′ ⇓ λx.e′ with the rule ev/lam.

∗ If e = e1 e2, attempt to derive e1 e2 ⇓ v using the rule ev/app by doing the following:

1. Search for a v1 such that e1 ⇓ v1 is derivable.

2. Assess whether v1 = λx.e′ for some e′; fail if it is not.
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3. Search for a v2 such that e2 ⇓ v2 is derivable.

4. Compute e′ = [v2/x]e

5. Search for a v such that e′ ⇓ v is derivable.

The goal of the operationalization transformation is to represent this deductive computation as
specification in the concurrent fragment of SLS. (To be sure, “concurrent” will seem like a
strange word to use at first, as the specifications we write in the concurrent fragment of SLS will
be completely sequential until Section 6.1.4.) The first step in this process, representing the syn-
tax of expressions as LF terms of type exp, was discussed in Section 4.1.4. The second step is to
introduce two new ordered atomic propositions. The proposition eval peq is the starting point, in-
dicating that we want to search for a v such that e ⇓ v, and the proposition retn pvq indicates the
successful completion of this procedure. Therefore, searching for a v such that e ⇓ v is derivable
will be analogous to building a trace T :: xe:〈eval peq〉;∗ xv:〈retn pvq〉.

Representing the first case is straightforward: if we are evaluating λx.e, then we have suc-
ceeded and can return λx.e. This is encoded as the following proposition:

∀E. eval (lamλx.E x)� {retn (lamλx.E x)}

The natural deduction rule ev/app involves both recursion and multiple subgoals. The five steps
in our informal search procedure are turned into three phases in SLS, corresponding to the three
recursive calls to the search procedure – steps 1 and 2 are combined, as are steps 4 and 5. When-
ever we make a recursive call to the search procedure, we leave a negative ordered proposition
A− ord in the context that awaits the return of a proposition retn pv′q to its left and then con-
tinues with the search procedure. Thus, each of the recursive calls to the search procedure will
involve a sub-trace of the form

xe:〈eval pe′q〉, y:A− ord ,∆ ;∗ xv:〈retn pv′q〉, y:A− ord ,∆

where A− is a negative proposition that is prepared to interact with the subgoal’s final retn pv′q
proposition to kickstart the rest of the computation. This negative proposition is, in effect, the
calling procedure’s continuation.

The nested rule for evaluating e1 e2 to a value is the following proposition, where the three
phases are indicated with dashed boxes:

∀E1.∀E2. eval (appE1E2)

� { evalE1 •
↓(∀E. retn (lamλx.E x)

� { evalE2 •
↓(∀V2. retnV2

� { eval (E V2) •
↓(∀V . retnV � {retnV }) }) }) }

Step1 ,2 (E1, E2)

Step3 (E2, E)

Step4 ,5 (E, V2)

Let’s work backwards through this three-phase protocol. In the third phase, which corresponds
to the fourth and fifth steps of our informal search procedure, we have found λx.E x = λx.peq
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(where e potentially has x free) and V2 = pv2q. The recursive call is to eval p[v2/x]eq, which is
the same thing as eval (E V2). If the recursive call successfully returns, the context will contain
a suspended atomic proposition of the form retnV where V = pvq, and the search procedure
as a whole has been completed: the answer is v. Thus, the negative proposition that implements
the continuation can be written as (∀V . retnV � {retnV }). (This continuation is the identity;
we will show how to omit it when we discuss tail-recursion elimination in Section 6.1.3.) The
positive proposition that will create this sub-computation can be written as follows:

Step4 ,5 (E, V2) ≡ eval (E V2) • ↓(∀V . retnV � {retnV })

Moving backwards, in the second phase (step 3 of the 5-step procedure) we have an expression
E2 = pe2q that we were given and λx.E x = λx.peq that we have computed. The recursive call
is to eval pe2q, and assuming that it completes, we need to begin the fourth step. The positive
proposition that will create this sub-computation can be written as follows:

Step3 (E2, E) ≡ evalE2 • ↓(∀V2. retnV2 � {Step4 ,5 (E, V2)})

Finally, the first two steps, like the fourth and fifth steps, are handled together. We have E1 =
pe1q and E2 = pe2q; the recursive call is to eval pe1q. Once the recursive call completes, we
enforce that the returned value has the form pλx.eq before proceeding to the continuation.

Step1 ,2 (E1, E2) ≡ evalE1 • ↓(∀E. retn (lamλx.E x)� {Step3 (E2, E)})

Thus, the rule implementing this entire portion of the search procedure is

∀E1.∀E2. eval (appE1E2)� {Step1 ,2 (E1, E2)}

The SLS encoding of our example natural semantics is shown in Figure 6.1 alongside the
transformed specification, which has the form of an ordered abstract machine semantics, though
it is different than the ordered abstract machine semantics presented in the introduction. We say
the specification above is nested, as ev/app is a rule that, when it participates in a transition,
produces a new rule (∀E. retn (lamλx.E x)� {. . .}) that lives in the context. (In contrast, the
ordered abstract machine semantics from the introduction was flat.) We discuss the defunction-
alization transformation, which allows us to derive flat specifications from nested specifications,
in Section 6.2 below.

The intuitive connection between natural semantics specifications and concurrent specifica-
tions has been explored previously and independently in the context of CLF by Schack-Nielsen
[SN07] and by Cruz and Hou [CH12]; Schack-Nielsen proves the equivalence of the two specifi-
cations, whereas Cruz and Hou used the connection informally. The contribution of this section
is to describe a general transformation (of which Figure 6.1 is one instance) and to prove the
transformation correct in general. We have implemented the operationalization and defunction-
alization transformations within the prototype implementation of SLS.

In Section 6.1.1 we will present the subset of specifications that our operationalization trans-
formation handles, and in Section 6.1.2 we present the most basic form of the transformation. In
Sections 6.1.3 and 6.1.4 we extend the basic transformation to be both tail-recursion optimizing
and parallelism-enabling. Finally, in Section 6.1.5, we establish the correctness of the overall
transformation.
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#mode ev + -.
ev: exp -> exp -> prop.

ev/lam:
ev (lam \x. E x)

(lam \x. E x).

ev/app:
ev (app E1 E2) V

<- ev E1 (lam \x. E x)

<- ev E2 V2

<- ev (E V2) V.

eval: exp -> prop ord.
retn: exp -> prop ord.

ev/lam:
eval (lam \x. E x)
>-> {retn (lam \x. E x)}.

ev/app:
eval (app E1 E2)
>-> {eval E1 *

(All E. retn (lam \x. E x)
>-> {eval E2 *

(All V2. retn V2
>-> {eval (E V2) *

(All V. retn V
>-> {retn V})})})}.

Figure 6.1: Natural semantics (left) and ordered abstract machine (right) for CBV evaluation

6.1.1 Transformable signatures

The starting point for the operationalization transformation is a deductive signature that is well-
moded in the sense described in Section 4.6.1. Every declared negative predicate will either
remain defined by deductive proofs (we write the atomic propositions built with these predicates
as p−d , d for deductive) or will be transformed into the concurrent fragment of SLS (we write
these predicates as ac, bc etc. and write the atomic propositions built with these predicates as p−c ,
c for concurrent).

For the purposes of describing and proving the correctness of the operationalization transfor-
mation, we will assume that all transformed atomic propositions p−c have two arguments where
the first argument is moded as an input and the second is an output. That is, they are declared as
follows:

#mode ac + −.
ac : τ1 → τ2 → prop.

Without dependency, two-place relations are sufficient for describing n-place relations.1 It should
be possible to handle dependent predicates (that is, those with declarations of the form ac :
Πx:τ1. τ2(x)→ type), but we will not do so here.

The restriction on signatures furthermore enforces that all rules must be of the form r : C or
r : D, where C and D are refinements of the negative propositions of SLS that are defined as

1As an example, consider addition defined as a three-place relation addM N P (where add has kind
nat → nat → nat → prop) with the usual mode (add + + −). We can instead use a two-place relation
add′ (add inputsM N)P with mode (add′ + −). The kind of add′ is add in → nat → type, where add in is
a new type with only one constructor add inputs : nat → nat → add in that effectively pairs together the two
natural numbers that are inputs.
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follows:

C ::= p−c | ∀x:τ. C | p+
pers � C | !p−c � C | !G� C

D ::= p−d | ∀x:τ.D | p+
pers � D | !p−c � D | !G� C

G ::= p−d | ∀x:τ.G | p+
pers � G | !D� G

For now, we can restrict our attention to signatures where all atomic propositions have the form
p−c and where all rules have the form C. This makes the classes p−d , D, and G irrelevant and
effectively restricts rules to the Horn fragment. Propositions p−d that remain deductively defined
by rules D will only be considered towards the end of this chapter in Section 6.6.2 when we
consider various transformations on SOS specifications and in Section 6.6.3 when we consider
transforming the natural semantics for Davies’ λ#.

Note, however, that if a signature is well-formed given that a certain atomic proposition is
assigned to the class p−c of transformed atomic propositions, the signature will remain well-
formed if we instead assign that proposition to the class p−d of atomic propositions that get left
in the deductive fragment. The only effect is that some rules that were previously of the form
r : C will become rules of the form r : D.2 In other words, we don’t have to operationalize
anything! If all atomic propositions are of the form p−d so that they remain deductive, then the
propositions p−c and C are irrelevant, and the restriction above describes all persistent, deductive
specifications – essentially, any signature that could be executed by the standard logic program-
ming interpretation of LF [Pfe89]. The operationalization transformation will be the identity on
such a specification.

All propositions C are furthermore equivalent (at the level of synthetic inference rules) to
propositions of the form ∀x0 . . . ∀xn. A+

n � . . . � A+
1 � ac t0 tn+1, where the ∀xi are short-

hand for a series of universal quantifiers ∀xi1:τi1 . . . ∀xik :τik , and where each variable in xi does
not appear in t0 (unless i = 0) nor in any A+

j with j < i but does appear in A+
i (or t0 if i = 0).

Therefore, when we consider moded proof search, the variables bound in x0 are all fixed by the
query and those bound in the other xi are all fixed by the output position of the ith subgoal.

Each premise A+
i either has the form p+

pers , !p−c , or !G. The natural deduction rule ev/app,
which has three premises, can be represented in this standard form as follows:

∀x0. ∀x1.∀x2.∀x3.A
+
3 � A+

2 � A+
1 � ac t0 t4

∀E1. ∀E2. ∀E. ∀V2. ∀V . !(ev (E V2)V )� !(evE2 V2)� !(evE1 (lamλx.E x))� ev (appE1E2)V

From here on out we will assume without loss of generality that any proposition C actually has
this very specific form.

6.1.2 Basic transformation
The operationalization transformation Op(Σ) operates on SLS signatures Σ that have the form
described in the previous section. We will first give the transformation on signatures; the trans-
formation of rule declarations r : C is the key case.

2The reverse does not hold: the proposition !(∀x:τ. p+
pers � p−d ) � p−d has the form D, but the proposition

!(∀x:τ. p+
pers � p−c )� p−c does not have the form C.
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Each two-place predicate ac gets associated with two one-place predicates eval a and retn a:
both eval a t and retn a t are positive ordered atomic propositions. We will write X† for the
operation of substituting all occurrences of p−c = ac t1 t2 with (eval a t1 � {retn a t2}) in X .
This substitution operation is used on propositions and contexts; it appears in the transformation
of rules r : D below.

∗ Op(·) = ·
∗ Op(Σ, ac : τ1 → τ2 → prop) = Op(Σ), eval a : τ1 → prop ord, retn a : τ2 → prop ord

∗ Op(Σ, ac : τ1 → τ2 → prop) = Op(Σ), eval a : τ1 → prop ord
(if retn a is already defined)

∗ Op(Σ, b : κ) = Op(Σ), b : κ (if b 6= ac)

∗ Op(Σ, c : τ) = Op(Σ), c : τ

∗ Op(Σ, r : C) = Op(Σ), r : ∀x0. eval a t0 � JA+
1 , . . . , A

+
n K(a, tn+1, id)

(where C = ∀x0 . . . ∀xn. A+
n � . . .� A+

1 � ac t0 tn+1)

∗ Op(Σ, r : D) = Op(Σ), r : D†

The transformation of a proposition C = ∀x0 . . . ∀xn. A+
n � . . . � A+

1 � ac t0 tn+1

involves the definition JA+
i , . . . , A

+
n K(a, tn+1, σ), where σ substitutes only for variables in xj

where j < i. The function is defined inductively on the length of the sequence A+
i , . . . , A

+
n .

∗ JK(a, tn+1, σ) = {retn a (σtn+1)}
∗ Jp+

pers , A
+
i+1, . . . , A

+
n K(a, tn+1, σ) = ∀xi. (σp+

pers)� JA+
i+1, . . . , A

+
n K(a, tn+1, σ)

∗ J!p−c , A
+
i+1, . . . , A

+
n K(a, tn+1, σ)

= {eval b (σtini ) • (∀xi. retn b (σtouti )� JA+
i+1, . . . , A

+
n K(a, tn+1, σ))}

(where p−c is bc t
in
i t

out
i )

∗ J!G,A+
i+1, . . . , A

+
n K(a, tn+1, σ) = ∀xi. !(σG†)� JA+

i+1, . . . , A
+
n K(a, tn+1, σ)

This operation is slightly more general than it needs to be to describe the transformation on
signatures, where the substitution σ will always just be the identity substitution id. Non-identity
substitutions arise during the proof of correctness, which is why we introduce them here.

Figure 6.1, relating the natural semantics to the encoding of the search procedure as an or-
dered abstract machine, is an instance of this transformation.

6.1.3 Tail-recursion
Consider again our motivating example, the procedure for that takes expressions e and searches
for expressions v such that e ⇓ v is derivable. If we were to implement that procedure as a
functional program, the procedure would be tail-recursive. In the procedure that handles the
case when e = e1 e2, the last step invokes the search procedure recursively. If and when that
callee returns v, then the caller will also return v.

Tail-recursion is significant in functional programming because tail-recursive calls can be
implemented without allocating a stack frame: when a compiler makes this more efficient choice,
we say it is performing tail-recursion optimization.3 An analogous opportunity for tail-recursion

3Or tail-call optimization, as a tail-recursive function call is just a specific instance of a tail call.
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optimization arises in our logical compilation procedure. In our motivating example, the last
step in the e1 e2 case was operationalized as a positive proposition of the form eval (E V2) •
(∀V . retnV � {retnV }). In a successful search, the process state

x:eval (E V2), y:(∀V . retnV � {retnV }) ord ,∆

will evolve until the state

x′:retnV ′, y:(∀V . retnV � {retnV }) ord ,∆

is reached, at which point the next step, focusing on y, takes us to the the process state

y′:retnV ′,∆

If we operationalize the last step in the e1 e2 case as eval (E V2) instead of as eval (E V2) •
(∀V . retnV � {retnV }), we will reach the same final state with one fewer transition. The tail-
recursion optimizing version of the operationalization transformation creates concurrent compu-
tations that avoid these useless steps.

We cannot perform tail recursion in general because the output of the last subgoal may be
different from the output of the goal. For example, the rule r : ∀X.∀Y . !aX Y � a (cX) (cY )
will translate to

r : ∀X. eval a (cX)� {eval aX • (∀Y . retn aY � {retn a (cY )})}

There is no opportunity for tail-recursion optimization, because the output of the last search
procedure, toutn = Y , is different than the value returned down the stack, tn+1 = cY . This case
corresponds to functional programs that cannot be tail-call optimized.

More subtly, we cannot even eliminate all cases where toutn = tn+1 unless these terms are
fully general. The rule r : ∀X. !testX true� test sX true, for example, will translate to

r : ∀X. eval a sX � {eval aX • (retn a true� retn a true)}

It would invalid to tail-call optimize in this situation. Even though the proposition retn a true�
retn a true is an identity, if the proposition retn a false appears to its left, the process state will be
unable to make a transition. This condition doesn’t have an analogue in functional programming,
because it corresponds to the possibility that moded deductive computation can perform pattern
matching on outputs and fail if the pattern match fails.

We say that tn+1 with type τ is fully general if all of its free variables are in xn (and therefore
not fixed by the input of any other subgoal) and if, for any variable-free term t′ of type τ , there
exists a substitution σ such that t = σtn+1. The simplest way to ensure this is to require that
tn+1 = toutn = y where y = xn.4

The tail-recursive procedure can be described by adding a new case to the definition of
JA+

i , . . . , A
+
n K(a, tn+1, σ):

4It is also possible to have a fully general tn+1 = c y1 y2 if, for instance, c has type τ1 → τ2 → foo and there
are no other constructors of type foo. However, we also have to check that there are no other first-order variables in
Ψ with types like τ3 → foo that could be used to make other terms of type foo.
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ev/lam: eval (lam \x. E x) >-> {retn (lam \x. E x)}.

ev/app: eval (app E1 E2)
>-> {eval E1 *

(All E. retn (lam \x. E x)
>-> {eval E2 *

(All V2. retn V2 >-> {eval (E V2)})})}.

Figure 6.2: Tail-recursion optimized semantics for CBV evaluation

∗ . . . (four other cases from Section 6.1.2) . . .

∗ J!b tinn tn+1K(a, tn+1, σ) = {eval a (σtinn )}
(where tn+1 is fully general and retn a = retn b)

This case overlaps with the third case of the definition given in Section 6.1.2, which indicates
that tail-recursion optimization can be applied or not in a nondeterministic manner.

Operationalizing the natural semantics from 6.1 with tail-recursion optimization gives us the
ordered abstract machine in Figure 6.2.

6.1.4 Parallelism

Both the basic transformation and the tail-recursive transformation are sequential: if x:eval peq;∗

∆, then the process state ∆ contains at most one proposition eval pe′q or retn pvq that can po-
tentially be a part of any further transition. Put differently, the first two versions of the oper-
ationalization transformation express deductive computation as a concurrent computation that
does not exhibit any parallelism or concurrency (sequential computation being a special case of
concurrent computation).

Sometimes, this is what we want: in Section 6.3 we will see that the sequential tail-recursion-
optimized abstract machine adequately represents a traditional on-paper abstract machine for
the call-by-value lambda calculus. In general, however, when distinct subgoals do not have
input-output dependencies (that is, when none of subgoal i’s outputs are inputs to subgoal i +
1), deductive computation can search for subgoal i and i + 1 simultaneously, and this can be
represented in the operationalization transformation.

Parallelism will change the way we think about the structure of the ordered context: previ-
ously we were encoding a stack-like structure in the ordered context, and now we will encode a
tree-like structure in the ordered context. It’s really easy to encode a stack in an ordered context,
as we have seen: we just write down the stack! Trees are only a little bit more complicated: we
encode them in an ordered context by writing down an ordered tree traversal. Our translation
uses a postfix traversal, so it is always possible to reconstruct a tree from the ordered context for
the same reason that a postfix notations like Reverse Polish notation are unambiguous: there’s
always only one way to reconstruct the tree of subgoals.

In the previous transformations, our process states were structured such that every negative
proposition A− was waiting on a single retn to be computed to its left; at that point, the negative
proposition could be focused upon, invoking the continuation stored in that negative proposition.
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eval: exp -> prop ord.
retn: exp -> prop ord.

ev/lam: eval (lam \x. E x) >-> {retn (lam \x. E x)}.

ev/app: eval (app E1 E2)
>-> {eval E1 * eval E2 *

(All E. All V2. retn (lam \x. E x) * retn V2
>-> {eval (E V2)})}.

Figure 6.3: Parallel, tail-recursion optimized semantics for CBV evaluation

If we ignore the first-order structure of the concurrent computation, these intermediate states look
like this:

(. . . subgoal 1 . . . ) y:(retn� cont) ord

Note that (subgoal 1) is intended to represent some nonempty sequence of ordered propositions,
not a single proposition. With the parallelism-enabling transformation, subgoal 1 will be able to
perform parallel search for its own subgoals:

(subgoal 1.1) (subgoal 1.2) y1:(retn1.1 • retn1.2 � cont1) ord , y:(retn� cont) ord

The two subcomputations (subgoal 1.1) and (subgoal 1.2) are next to one another in the or-
dered context, but the postfix structure that transformed specifications impose on the process
state ensures that the only way they can interact is if they both finish (becoming z1.1:〈retn1.1〉
and z1.2:〈retn1.2〉, respectively), which will allow us to focus on y1 and begin working on the
continuation cont1.

To allow the transformed programs to enable parallel evaluation, we again add a new case to
the function that transforms propositions C. The new case picks out j− i premises Ai, . . . , Aj =
!p−ci, . . . , !p

−
cj , requiring that those j − i premises are independent. Each p−ck = bkc t

in
k t

out
k , where

the term toutk is what determines the assignments for the variables in xk when we perform moded
proof search. Independence between premises requires that the free variables of tink cannot in-
clude any variables in xm for i ≤ m < k; the well-modeness of the rule already ensures that the
free variables in xm for k ≤ m ≤ j.

∗ . . . (four other cases from Section 6.1.2, one other case from Section 6.1.3) . . .

∗ J!p−ci, . . . , !p
−
cj, A

+
j+1, . . . , A

+
n K(a, tn+1, σ)

= {eval bi (σtini ) • . . . • eval bj (σtinj ) •
(∀xi . . . ∀xj. retn bi (σtouti ) • . . . • retn bj (σtoutj )
� JA+

j+1, . . . , A
+
n K(a, tn+1, σ))}

(where p−ck is bkc t
in
k t

out
k and ∅ = FV (tink ) ∩ (xi ∪ . . . ∪ xj) for i ≤ k ≤ j)

This new case subsumes the old case that dealt with sequences of the form !p−c , A
+
i+1, . . . , A

+
n ;

that old case is now an instance of the general case where i = j. Specifically, the second side
condition on the free variables, which is necessary if the resulting rule is to be well-scoped, is
trivially satisfied in the sequential case where i = j.
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The result of running the natural semantics from Figure 6.1 through the parallel and tail-
recursion optimizing ordered abstract machine is shown in Figure 6.3; it shows that we can
search for the subgoals e1 ⇓ λx.e and e2 ⇓ v2 in parallel. We cannot run either of these subgoals
in parallel with the third subgoal [v2/x]e ⇓ v because the input [v2/x]e mentions the outputs of
both of the previous subgoals.

6.1.5 Correctness
We have presented, in three steps, a nondeterministic transformation. One reason for presenting a
nondeterministic transformation is that the user can control this nondeterminism to operationalize
with or without parallelism and with or without tail-call optimization. (The transformation as
implemented in the SLS prototype only has one setting: it optimizes tail-calls but does not enable
parallel evaluation.) The other reason for presenting a nondeterministic transformation is that we
can prove the correctness of all the variants we have presented so far in one fell swoop by proving
the correctness of the nondeterministic transformation.

Correctness is fundamentally the property that we have Ψ; Γ `Σ 〈p−d 〉 if and only if Ψ; Γ† `Op(Σ)

〈p−d 〉 and Ψ; Γ `Σ 〈ac t1 t2〉 if and only if (Ψ; Γ, eval a t1) ;∗Op(Σ) (Ψ; Γ, retn (retn a t2)). We
label the forward direction “completeness” and the backward direction “soundness,” but direc-
tional assignment is (as usual) somewhat arbitrary. Completeness is a corollary of Theorem 6.2,
and soundness is a corollary of Theorem 6.4. We use Theorem 6.1 pervasively and usually with-
out mention.

Theorem 6.1 (No effect on the LF fragment). Ψ `Σ t : τ if and only if Ψ `Op(Σ) t : τ .

Proof. Straightforward induction in both directions; the transformation leaves the LF-relevant
part of the signature unchanged.

Completeness

Theorem 6.2 (Completeness of operationalization). If all propositions in Γ have the form x:D pers
or z:〈p+

pers〉, then
1. If Ψ; Γ `Σ 〈p−d 〉, then Ψ; Γ† `Op(Σ) 〈p−d 〉.
2. If Ψ; Γ, [D] `Σ 〈p−d 〉, then Ψ; Γ†, [D†] `Op(Σ) 〈p−d 〉.
3. If Ψ; Γ `Σ G, then Ψ; Γ† `Op(Σ) G

†.
4. If ∆ matches Θ{{Γ}} and Ψ; Γ `Σ 〈p−c 〉 (where p−c = ac t s),

then (Ψ; Θ†{x:〈eval a t〉}) ;∗Op(Σ) (Ψ; Θ†{y:〈retn a s〉}).

Proof. Mutual induction on the structure of the input derivation.
The first three parts are straightforward. In part 1, we have Ψ; Γ `Σ h · Sp : 〈p−d 〉 where

either h = x and x:D ∈ Γ or else h = r and r : D ∈ Σ. In either case the necessary result is
h · Sp ′, where we get Sp ′ from the induction hypothesis (part 2) on Sp.

In part 2, we proceed by case analysis on the proposition D in focus. The only interesting
case is where D = !p−c � D′

∗ If D = p−d , then Sp = NIL and NIL gives the desired result.
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∗ If D = ∀x:τ.D′ or D = p+
pers � D′, then Sp = (t; Sp ′) or Sp = (z; Sp ′) (respec-

tively). The necessary result is (t; Sp ′′) or (z; Sp ′′) (respectively) where we get Sp ′′ from
the induction hypothesis (part 2) on Sp ′.
∗ If D = !p−c � D′ and p−c = ac t1 t2, then Sp = (!N ; Sp ′) and D† = !(eval a t1 �
#(retn a t2)� D′†).5

Ψ; Γ `Σ N : 〈ac t1 t2〉 (given)
Ψ; Γ, [D] `Σ Sp ′ : 〈p−d 〉 (given)
T :: (Ψ; Γ†, x:eval a t1) ;∗Op(Σ) (Ψ; Γ†, y:retn a t2) (ind. hyp. (part 4) on N )
Ψ; Γ, [D′†] `Op(Σ) Sp ′′ : 〈p−d 〉 (ind. hyp. (part 2) on Sp ′)
Ψ; Γ† `Op(Σ) λx. {letT in y} : eval a t1 � #(retn a t2) (construction)
Ψ; Γ†, [D†] `Op(Σ) !(λx. {letT in y}); Sp ′ : 〈p−d 〉 (construction)

∗ If D = !G � D′, then Sp = !N ; Sp ′. The necessary result is !N ′; Sp ′′. We get N ′ from
the induction hypothesis (part 3) on N and get Sp ′′ from the induction hypothesis (part 2)
on Sp ′.

The cases of part 3 are straightforward invocations of the induction hypothesis (part 1 or
part 3). For instance, if G = !D � G′ then we have a derivation of the form λx.N where
Ψ; Γ, x:D pers `Σ N : G′. By the induction hypothesis (part 3) we have Ψ; Γ†, x:D† pers `Op(Σ)

N ′ : G′†, and we conclude by constructing λx.N ′.
In part 4, we have Ψ; Γ `Σ r · Sp : 〈p−d 〉, where r:C ∈ Σ and the proposition C is equivalent

to ∀x0 . . . ∀xn. A+
n � . . .� A+

1 � ac t0 tn+1 as described in Section 6.1.2. This means that, for
each 0 ≤ i ≤ n, we can decompose Sp to get σi = (s0/x0, . . . , si/xi) (for some terms s0 . . . si
that correspond to the correct variables) and we have a value Ψ; Γ `Σ Vi : [σiA

+
i ]. We also have

t = σ0t0 and s = σntn+1. It suffices to show that, for any 1 ≤ i ≤ n, there is

∗ a spine Sp such that Ψ; Γ†, [JA+
i , . . . , A

+
n K(a, tn+1, σ0)] `Op(Σ) Sp : 〈#C+〉,

∗ a pattern+trace λP.T :: (Ψ; Θ†{C+}) ;∗Op(Σ) (Ψ; Θ†{y:retn a (σntn+1)}).6

Once we prove this, the trace we need to show is {P} ← r · (s0; Sp);T .
We will prove this by induction on the length of the sequence sequence Ai, . . . , An, and

proceed by case analysis on the definition of the operationalization transformation:

∗ JK(a, tn+1, σn) = #(retn a (σntn+1))

This is a base case: let Sp = NIL, P = y, and T = �, and we are done.

∗ J!ac tinn tn+1K(a, tn+1, σn−1) = #(eval a (σn−1t
in
n ))

We are given a value Ψ; Γ `Σ !N : [!ac (σnt
in
n ) (σntn+1)]; observe that σn−1t

in
n = σnt

in
n .

This is also a base case: let Sp = NIL, and let P = xn :: (Ψ; Θ†{eval a (σnt
in
n ))} =⇒Op(Σ)

(Ψ; Θ†{xn:〈eval a (σnt
in
n )〉}). We need a trace T :: (Ψ; Θ†{xn:〈eval a (σnt

in
n )〉}) ;∗Op(Σ)

5Recall that #C+ and {C+} are synonyms for the internalization of the lax modality; we will use the # in the
course of this proofs in this section.

6The derived pattern+trace form is discussed at the end of Section 4.2.6.
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(Ψ; Θ†{y:retn a (σntn+1)}); this follows from the outer induction hypothesis (part 4) on
N .

∗ Jp+
pers , A

+
i+1, . . . , A

+
n K(a, tn+1, σi−1) = ∀xi. σi−1p

+
pers � JA+

i+1, . . . , A
+
n K(a, tn+1, σi−1)

Ψ; Γ `Σ z : [σip
+
pers ] (given)

σi = (σi−1, si/xi) (definition of σi)
Ψ; Γ, [JA+

i+1, . . . , A
+
n K(a, tn+1, σi)] `Op(Σ) Sp ′ : 〈#C+}〉 (by inner ind. hyp.)

λP.T :: (Ψ; Θ†{C+}) ;∗Op(Σ) (Ψ; Θ†{y:retn a (σntn+1))} ”
Ψ; Γ, [∀xi. (σi−1p

+
pers)� JA+

i+1, . . . , A
+
n K(a, tn+1, σi−1)] `Op(Σ) (si; z; Sp ′) : 〈#C+〉

(construction)

We conclude by letting Sp = si; z; Sp ′.

∗ J!p−ci, . . . , !p
−
cj, A

+
j+1, . . . , A

+
n K(a, tn+1, σi−1)

= #

 eval bi (σi−1t
in
i ) • . . . • eval bj (σi−1t

in
j ) •

(∀xi . . . ∀xj. retn bi (σi−1t
out
i ) • . . . • retn bj (σi−1t

out
j )

� JA+
j+1, . . . , A

+
n K(a, tn+1, σi−1)))


(where p−ck is bkc t

in
k t

out
k and ∅ = FV (tink ) ∩ (xi ∪ . . . ∪ xj) for i ≤ k ≤ j)

Let Sp = NIL and P = yi, . . . , yj, yij . It suffices to show that there is a trace

T :: (Ψ,Θ†{yi:〈eval bi (σi−1t
in
i )〉, . . . , yj:〈eval bj (σi−1t

in
j )〉,

yij:(∀xi . . . ∀xj. retn bi (σi−1t
out
i ) • . . . • retn bj (σi−1t

out
j )

� JA+
j+1, . . . , A

+
n K(a, tn+1, σi−1)) ord})

;∗Op(Σ) (Ψ; Θ†{z:〈retn a (σntn+1)〉})

Ψ; Γ `Σ !Nk : [!bkc (σkt
in
k ) (σkt

out
k )] (i ≤ k ≤ j) (given)

Ψ; Γ `Σ !Nk : [!bkc (σi−1t
in
k ) (σjt

out
k )] (i ≤ k ≤ j) (condition on translation, defn. of σk)

T0 :: (Ψ,Θ†{yi:〈eval bi (σi−1t
in
i )〉, . . . , yj:〈eval bj (σi−1t

in
j )〉,

yij:(∀xi . . . ∀xj. retn bi (σi−1t
out
i ) • . . . • retn bj (σi−1t

out
j )

� JA+
j+1, . . . , A

+
n K(a, tn+1, σi−1)) ord})

;∗Op(Σ) (Ψ,Θ†{zi:〈retn bi (σjt
out
i )〉, . . . , zj:〈retn bj (σjt

out
j )〉,

yij:(∀xi . . . ∀xj. retn bi (σi−1t
out
i ) • . . . • retn bj (σi−1t

out
j )

� JA+
j+1, . . . , A

+
n K(a, tn+1, σi−1)) ord})

(by outer ind. hyp. (part 4) on each of the Nk in turn)
Ψ; Γ, [JA+

j+1, . . . , A
+
n K(a, tn+1, σj)] `Op(Σ) Sp ′ : 〈#C+〉 (by inner ind. hyp.)

λP ′.T ′ :: (Ψ,Θ†{C+}) ;∗Op(Σ) (Ψ,Θ†{y:〈retn a s〉}) ”

We conclude by letting T = (T0; {P ′} ← yij · (si; . . . sj; (yi • . . . • yj); Sp ′);T ′).

∗ J!G,A+
i+1, . . . , A

+
n K(a, tn+1, σi−1) = ∀xi. !σi−1G

†� JA+
i , . . . , A

+
n K(a, tn+1, σi−1)

165



October 15, 2012
DRAFT

Ψ; Γ `Σ !N : [!σiG] (given)
Ψ; Γ† `Op(Σ) N

′ : σiG
† (by outer ind. hyp. (part 3) on N )

σi = (σi−1, si/xi). (definition of σi)
Ψ; Γ, [JA+

i , . . . , A
+
n K(a, tn+1, σi)] `Op(Σ) Sp ′ : 〈#C+〉 (by inner ind. hyp.)

λP.T :: (Ψ; Θ†{C+}) ;∗Op(Σ) (Ψ; Θ†{y:retn a s}) ”
Ψ; Γ, [∀xi. !(σi−1G)� JA+

i , . . . , A
+
n K(a, tn+1, σi−1)] `Op(Σ) (si; !N ′; Sp ′) : 〈#C+〉

(construction)

We conclude by letting Sp = si; !N ′; Sp ′.

This completes the inner induction in the fourth part, and hence the completeness proof.

Soundness

Soundness under the parallel translation requires us to prove an inversion lemma like the one that
we first encountered in the proof of preservation for adequacy (Theorem 4.7). To this end, we
describe two new refinements of negative propositions that capture the structure of transformed
concurrent rules.

R ::= ∀x. retn b1 t1 • . . . • retn bn tn� S

S ::= ∀x:τ. S | p+
pers � S | !A−� S | #(eval b1 t1 • . . . • eval bn tn • ↓R) | #(eval b t)

Every concurrent rule in a transformed signature Op(Σ) has the form r : ∀x. eval b t� S.

Theorem 6.3 (Rearrangement). If ∆ contains only atomic propositions, persistent propositions
of the form D, and ordered propositions of the form R, and if Γ matches z:〈retn z tz〉, then

1. If ∆ matches Θ{{x1:〈retn b1 t1〉, . . ., xn:〈retn bn tn〉, y:(∀x. retn b1 s1 • . . . • retn bn sn� S)}}
and T :: (Ψ; ∆) ;∗Op(Σ) (Ψ; Γ), then T = {P} ← y · (u; (x1 • . . . • xn); Sp);T ′ where
(u/x)si = ti for 1 ≤ i ≤ n.

2. If ∆ matches Θ{{y:〈eval b t〉}} and T :: (Ψ; ∆) ;∗Op(Σ) (Ψ; Γ), then T = {P} ← r ·
(u; y; Sp);T ′ where r : ∀x. eval b s� S ∈ Op(Σ).

Proof. In both cases, the proof is by induction on the structure of T and case analysis on the first
steps in T . If the first step does not proceed by focusing on y (part 1) or focusing on a rule in the
signature and consuming y (part 2), then we proceed by induction on the smaller trace to move
the relevant step to the front. We have to check that the first step doesn’t output any variables
that are input variables of the relevant step. This is immediate from the structure of R, S, and
transformed signatures.

The main soundness theorem is Theorem 6.4. The first three cases of Theorem 6.4 are
straightforward transformations from deductive proofs to deductive proofs, and the last two cases
are the key. In the last two cases, we take a trace that, by its type, must contain the information
needed to reconstruct a deductive proof, and we use induction and inversion to read off the form
of that proof.

166



October 15, 2012
DRAFT

Theorem 6.4 (Soundness of operationalization). If all propositions in Γ have the form x:D pers
or z:〈p+

pers〉, and all propositions in ∆ have the form x:D pers , z:〈p+
pers〉, x:〈eval b t〉, x:〈retn b t〉,

or x:R ord , then
1. If Ψ; Γ† `Op(Σ) 〈p−d 〉, then Ψ; Γ `Σ 〈p−d 〉.
2. If Ψ; Γ†, [D†] `Op(Σ) 〈p−d 〉, then Ψ; Γ, [D] `Σ 〈p−d 〉.
3. If Ψ; Γ† `Op(Σ) G

†, then Ψ; Γ `Σ G.
4. If ∆ matches Θ†{{Γ†}}, Γz matches z:〈retn z tz〉,

and (Ψ; Θ†{{Γ, x:〈eval a t〉}}) ;∗Op(Σ) (Ψ; Γz),
then there exists an s s.t. Ψ; Γ `Σ 〈ac t s〉 and (Ψ; Θ†{y:〈retn a s〉}) ;∗Op(Σ) (Ψ; Γz).

5. If ∆ matches Θ†{{Γ†}}, Γz matches z:〈retn z tz〉,
Ψ; Γ†, [JAi, . . . , AnK(a, tn+1, σi)] `Op(Σ) 〈#C+〉, and (Ψ; Θ†{C+}) ;∗Op(Σ) (Ψ; Γz),
then there exists a σ ⊇ σi such that Ψ; Γ `Σ [σA+

j ] for i ≤ j ≤ n

and (Ψ; Θ†{y:〈retn a (σtn+1)〉}) ;∗Op(Σ) (Ψ; ∆z).

Proof. By induction on the structure of the given derivation or given trace. Parts 1 and 3 exactly
match the structure of the completeness proof (Theorem 6.2); the only difference in Part 2 is the
case where D = !pc� D′. In his case, we reason as follows:

D = !pc� D′, where pc = ac t1 t2 (given)
D† = !(eval a t1 � #(retn a t2))� D′† (definition of D†)
Ψ; Γ, [!(eval a t1 � #(retn a t2))� D′†] `Op(Σ) Sp : 〈p−d 〉 (given)
Sp = !(λx. {letT in y}); Sp ′, where (inversion on the type of Sp)

T :: (Ψ; Γ, x:〈eval a t1〉) ;∗Op(Σ) (Ψ; Γz), ”
Γz matches y:〈retn a t2〉, and ”
Ψ; Γ, [D′†] `Op(Σ) Sp ′ : 〈p−d 〉 ”

Ψ; Γ, [D′] `Σ Sp ′′ : 〈p−d 〉 (ind. hyp. (part 2) on Sp ′)
Ψ; Γ `Σ N : 〈ac t1 s〉 (ind. hyp. (part 4) on T )
T ′ :: (Ψ; Γ, y′:〈retn a s〉) ;∗Op(Σ) (Ψ; Γz) ”
T ′ = �, y′ = y, and t2 = s (case analysis on the structure of T ′)
Ψ; Γ, [!pc� D′] `Σ !N ; Sp ′ : 〈p−d 〉 (construction)

Part 4 we let σ0 = (u/x).

T :: (Ψ; Θ†{{x:〈eval a t〉}}) ;∗Op(Σ) (Ψ; Γz) (given)
T = {P} ← r · (u;x; Sp);T ′ (Theorem 6.3 on T )

r : ∀x0. eval a t0 � JA+
1 , . . . , A

+
n K(a, tn+1, id) ∈ Op(Σ) ”

t = σ0t0 ”
Ψ; Γ, [JA+

1 , . . . , A
+
n K(a, tn+1, σ0)] `Op(Σ) Sp : 〈#C+〉 ”

λP.T ′ :: (Ψ; Θ†{C+}) ;∗Op(Σ) (Ψ; Γz) ”
Ψ; Γ `Σ Vi : [σA+

i ] for 1 ≤ j ≤ n (ind. hyp. (part 5) on Sp and T ′)
T ′′ :: (Ψ; Θ†{y:〈retn a (σtn+1)〉}) ;∗Op(Σ) (Ψ; Γz) ”

We needed to show a derivation and a trace: the trace T ′′ is precisely the latter thing. For the
derivation of ac t s (for some s), we observe that r ∈ Σ has a type equivalent to ∀x0 . . . ∀xn. A+

n �
. . . � A+

0 � ac t0 tn+1. Therefore, by letting s = σtn+1 and using the Vi from the induction
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hypothesis (part 5) above, we can construct a derivation of Ψ; Γ `Σ 〈ac t s〉 by focusing on r,
which is the other thing we needed to show.

The step above where we assume that the head of r involves the predicate ac is the only
point in the correctness proofs where we rely on the fact that each transformed predicate eval a
is associated with exactly one original-signature predicate ac – if this were not the case and
eval a were also associated with an original-signature predicate b, then we might get the “wrong”
derivation back from this step. We do not have to similarly rely on retn a being similarly uniquely
associated with ac.

Part 5 We are given a spine Ψ; Γ†, [JAi, . . . , AnK(a, tn+1, σi)] `Op(Σ) Sp : 〈#C+〉 and a trace
λP.T :: (Ψ; Θ†{C+}) ;∗Op(Σ) (Ψ; Γz). We need to show a σ ⊇ σi, an Ψ; Γ `Op(Σ) N : [σA+

k ]

for i ≤ j ≤ n, and T ′ :: (Ψ; Θ†{y:〈retn a (σtn+1)〉}) ;∗Op(Σ) (Ψ; ∆z).
We proceed by case analysis on the definition of the operationalization transformation:

∗ JK(a, tn+1, σn) = #(retn a (σntn+1))

This is a base case: there are no values to construct. By inversion on the type of P we know
it has the form y :: (Ψ; Θ†{retn a (σntn+1)}) =⇒Op(Σ) (Ψ; Θ†{y:〈retn a (σntn+1)〉}). Let
σ = σn and we are done; the trace T is the necessary trace. Because (Ψ; Θ†{retn a (σntn+1)})
decomposes to (Ψ; Θ†{y:〈retn a (σntn+1)〉}), we let σ = σn and we are done.

∗ J!ac tinn tn+1K(a, tn+1, σn−1) = #(eval a (σn−1t
in
n ))

This is also a base case: we have one value of type !ac (σtinn ) (σtn+1) to construct, where
σ ⊇ σn−1. By inversion on the type of P we know it has the form y :: (Ψ; Θ†{eval a (σnt

in
n )}) =⇒Op(Σ)

(Ψ; Θ†{y:〈eval a (σnt
in
n )〉}), meaning that T :: (Ψ; Θ†{y:〈eval a (σnt

in
n )〉}) ;∗Op(Σ) (Ψ; ∆z).

By the induction hypothesis (part 4) on T , we have an s such that Ψ; Γ `Σ N : 〈ac t s〉 and
a trace T ′ :: (Ψ; Θ†{y:〈retn a s〉}) ;∗Op(Σ) (Ψ; Γz).
We can only apply tail-recursion optimization when tn+1 is fully general, which means we
can construct a σ ⊇ σn−1 such that σtn+1 = s. The value we needed to construct is just
!N , and the trace T ′ is in the form we need, so we are done.

∗ Jp+
pers , A

+
i+1, . . . , A

+
n K(a, tn+1, σi−1) = ∀xi. σi−1p

+
pers � JA+

i+1, . . . , A
+
n K(a, tn+1, σi−1)

By type inversion, the spine Sp = ui; z; Sp ′. Let σi = (σi−1, ui/xi). The induction
hypothesis (part 5) on Sp ′ and T gives σ ⊇ σi, values σA+

j for i < j ≤ n, and a trace
T ′ :: (Ψ; Θ†{y:〈retn a (σtn+1)〉}) ;∗Op(Σ) (Ψ; ∆z). The remaining value of σAi = σp+

pers

is just z.

∗ J!p−ci, . . . , !p
−
cj, A

+
j+1, . . . , A

+
n K(a, tn+1, σi−1)

= #

 eval bi (σi−1t
in
i ) • . . . • eval bj (σi−1t

in
j ) •

(∀xi . . . ∀xj. retn bi (σi−1t
out
i ) • . . . • retn bj (σi−1t

out
j )

� JA+
j+1, . . . , A

+
n K(a, tn+1, σi−1))


(where p−ck is bkc t

in
k t

out
k and FV (tink ) /∈ (xi ∪ . . . ∪ xj) for i ≤ k ≤ j)
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Let R = ∀xi . . . ∀xj. retn bi (σi−1t
out
i ) • . . . • retn bj (σi−1t

out
j )

� JA+
j+1, . . . , A

+
n K(a, tn+1, σi−1)

By inversion on the type of P , we know it has the form yi, . . . , yj, y, and we know that
T :: (Ψ; Θ†{yi:〈eval bi (σi−1t

in
i )〉, . . . , yj:〈eval bj (σi−1t

in
j )〉, y:R ord}) ;∗Op(Σ) (Ψ,∆z).

By j − i applications of the induction hypothesis (part 4) starting with T , we obtain for
i ≤ k ≤ j a derivation of Ψ; Γ `Σ Nk : 〈bkc (σi−1t

in
k ) sk〉 and a smaller trace T ′′ ::

(Ψ; Θ†{zi:〈retn bi si〉, . . . , zj:〈retn bj sj〉, y:R ord}) ;+
Op(Σ) (Ψ; ∆z).

By Theorem 6.3 we get that T ′′ = {P} ← y · (ui; . . . ;uj; (zi • . . . • zj); Sp ′);T ′′′.
Let σj = (σi−1, ui/xi, . . . , uj/xj). Then we have that sk = σjt

out
k for i ≤ k ≤ j and

Ψ; Γ†, [JA+
j+1, . . . , A

+
n K(a, tn+1, σj)] `Op(Σ) Sp ′ : 〈#C+〉.∗

The induction hypothesis (part 5) on Sp ′ and T ′′′ gives σ ⊇ σj , values σA+
k for j < k ≤ n,

and a trace T ′ :: (Ψ; Θ†{y:〈retn a (σtn+1)〉}) ;∗Op(Σ) (Ψ; ∆z). The remaining values of
type σAk = !(σp−ck) for i ≤ k ≤ j all have the form !Nk (where the Nk were constructed
above by invoking part 4 of the induction hypothesis).

∗ J!G,A+
i+1, . . . , A

+
n K(a, tn+1, σi−1) = ∀xi. !σi−1G

†� JA+
i , . . . , A

+
n K(a, tn+1, σi−1)

By type inversion, the spine Sp = ui; !N ; Sp ′. Let σi = (σi−1, ui/xi) The induction
hypothesis (part 5) on Sp ′ and T gives σ ⊇ σi, values σA+

j for i < j ≤ n, and a trace T ′ ::
(Ψ; Θ†{y:〈retn a (σtn+1)〉}) ;∗Op(Σ) (Ψ; ∆z). The remaining value of type σAi = !(σG)
is !N ′, where we get Ψ; Γ `Σ N

′ : σG from the induction hypothesis (part 3) on N .

This completes the proof.

6.2 Logical transformation: defunctionalization
Defunctionalization is a procedure for turning nested SLS specifications into flat SLS specifi-
cations. The defunctionalization procedure implemented in the SLS prototype is actually three
transformations. The first is properly a defunctionalization transformation (Section 6.2.1), the
second is an uncurrying transformation (Section 6.2.2), and the third is a refactoring that trans-
forms a family of cont-like predicates into a single cont predicate and a family of frames (Sec-
tion 6.2.3). One example of the full three-part defunctionalization transformation on a proposi-
tional signature is given in Figure 6.4.

6.2.1 Defunctionalization
Defunctionalization is based on the following intuitions: if A− is a closed negative proposition
and we have a single-step transition {P} ← y · Sp :: (Ψ; Θ{y:A− ord}) ;Σ (Ψ; ∆′), then we
can define an augmented signature

Σ′ = Σ,

cont : prop ord,

run cont : cont� A−
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a, b, c, d : prop ord, a, b, c, d : prop ord,

frame : type,

cont : frame→ type.

frameA1 : frame,

ruleA : a� {b • ↓(c� {d})}, ruleA : a� {b • cont frameA1},
=⇒ ruleA1 : c • cont frameA1� {d},

frameB1 : frame,

frameB2 : frame,

ruleB : c� {↓(d� {↓(a • a� {b})})} ruleB : c� {cont frameB1},
ruleB1 : d • cont frameB1� {cont frameB2},
ruleB2 : a • a • cont frameB2� {b}

Figure 6.4: Defunctionalization on a nested SLS signature

and it is the case that (Ψ; Θ{y:〈cont〉}) ;Σ′ (Ψ; ∆′) as well. Whenever the step {P} ← y ·Sp is
possible under Σ, the step {P} ← run cont · (y; Sp) will be possible under Σ′, and vice versa. (It
would work just as well for run cont to be cont � A− – the persistent propositions A+ � B−

and A+ � B− are indistinguishable in ordered logic.)
Because rules in the signature must be closed negative propositions, this strategy won’t work

for a transition that mentions free variables from the context. However, every open proposition
Ψ `Σ A− type− can be refactored as an open proposition a1:τ1, . . . , an:τn ` B− type− and a
substitution σ = (t1/a1, . . . , tn/an) such that Ψ `Σ σ : a1:τ1, . . . , an:τn and σB− = A−. Then,
we can augment the signature in this more general form:

Σ′′ = Σ,

cont : Πa1:τ1 . . .Πan:τn. prop ord

run cont : ∀a1:τ1 . . . ∀an:τn. cont a1 . . . an� B−

As before, whenever the step {P} ← y ·Sp :: (Ψ; Θ{y : A− ord}) ;∗Σ (Ψ′; ∆′) is possible under
Σ, the step {P} ← run cont · (t1; . . . ; tn; y; Sp) :: (Ψ; Θ{y : 〈cont t1 . . . tn〉}) ;∗Σ′ (Ψ′; ∆′) will
be possible under Σ′, and vice versa.

Taking this a step further, if we have a signature Σ1 = Σ, rule : . . . � #(. . . • ↓B− • . . .)
where the variables a1 . . . an are free in B−, then any trace in this signature will be in lock-step
bisimulation with a trace in this signature:

Σ2 = Σ,

cont : Πa1:τ1 . . .Πan:τn. prop ord

rule : . . .� #(. . . • (cont a1 . . . an) • . . .)
run cont : ∀a1:τ1 . . . ∀an:τn. cont a1 . . . an� B−

170



October 15, 2012
DRAFT

Specifically, say that (Ψ; ∆1)R (Ψ; ∆2) when ∆1 is ∆2 where all variable declarations of the
form y:〈cont t1 . . . tn〉 ord in ∆2 have been replaced by y:(t1/a1 . . . tn/an)B− ord in ∆1. (Note
that if `Σ2 (Ψ; ∆2) state holds, then `Σ1 (Ψ; ∆1) state holds as well.) It is the case that if
S1 :: (Ψ; ∆1) ;∗Σ1

(Ψ′; ∆′1) then S2 :: (Ψ; ∆2) ;∗Σ2
(Ψ′; ∆′2) where (Ψ′; ∆′1)R (Ψ′; ∆′2).

The opposite also holds: if S2 :: (Ψ; ∆2) ;∗Σ2
(Ψ′; ∆′2) then S1 :: (Ψ; ∆1) ;∗Σ1

(Ψ′; ∆′1) where
(Ψ′; ∆′1)R (Ψ′; ∆′2). For transitions not involving rule or run cont in Σ2 this is immediate, for
transitions involving rule we observe that the propositions introduced by inversion preserve the
simulation, and for transitions involving run cont we use aforementioned fact that the atomic
term y · Sp in Σ1 is equivalent to the atomic term run cont · (t1; . . . ; tn; y; Sp) in Σ2.

We can iterate this defunctionalization procedure on the nested ev/app rule from Figure 6.2:

ev/app : ∀E1.∀E2. eval (appE1E2)

� {evalE1 •
↓(∀E. retn (lamλx.E x)

� {evalE2 • ↓(∀V2. retnV2 � {eval (E V2)})})}.

The outermost nested rule only has the variable E2 free, so the first continuation we introduce,
cont app1, has one argument.

cont app1 : exp→ prop ord,

ev/app : ∀E1.∀E2. eval (appE1E2)� {evalE1 • cont app1E2}
ev/app1 : ∀E2. cont app1E2 � ∀E. retn (lamλx.E x)

� {evalE2 • ↓(∀V2. retnV2 � {eval (E V2)})}.

This step turns ev/app into a flat rule; we repeat defunctionalization on ev/app1 to get a com-
pletely flat specification. This introduces a new proposition ev app2 that keeps track of the free
variable E with type exp→ exp.

cont app1 : exp→ prop ord,

cont app2 : (exp→ exp)→ prop ord,

ev/app : ∀E1.∀E2. eval (appE1E2)� {evalE1 • cont app1E2}
ev/app1 : ∀E2. cont app1E2 � ∀E. retn (lamλx.E x)� {evalE2 • cont app2 (λx.E x)}.
ev/app2 : ∀E. cont app2 (λx.E x)� ∀V2. retnV2 � {eval (E V2)}.

6.2.2 Uncurrying
The first arrow in a rule can be freely switched between left and right ordered implication: the
rules A+ � {B+} and A+ � {B+} are equivalent, for instance. Pfenning used A+ −−• {B+}
as a generic form of ordered implication for this reason in [Pfe04]. This observation only holds
because rules act like persistent resources, however! It does not seem to be possible to treat
−−• as a real connective in ordered logic with well-behaved left and right rules that satisfy cut
admissibility, and the observation applies only to the first arrow: while the rule rule1 : A+ �
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eval: exp -> prop ord.
retn: exp -> prop ord.
cont_app1: exp -> prop ord.
cont_app2: (exp -> exp) -> prop ord.

ev/lam: eval (lam \x. E x) >-> {retn (lam \x. E x)}.

ev/app: eval (app E1 E2) >-> {eval E1 * cont_app1 E2}.

ev/app1: retn (lam \x. E x) * cont_app1 E2
>-> {eval E2 * cont_app2 (\x. E x)}.

ev/app2: retn V2 * cont_app2 (\x. E x) >-> {eval (E V2)}.

Figure 6.5: Uncurried call-by-value evaluation

B+ � {C+} is equivalent to the rule rule2 : A+ � B+ � {C+}, these two rules are not
equivalent to the rule rule3 : A+ � B+ � {C+}.

Uncurrying tries to rewrite a rule so that the only arrow is the first one, taking an awkward
rule like A+ � B+ � C+ � D+ � {E+} to the more readable flat rule C+ • A+ • B+ •
D+ � {E+}. Uncurrying can only be performed on persistent or linear propositions (or rules
in the signature): there is no A+ that makes the variable declaration x:(p+ � q+ � {r+}) ord ,
equivalent to x:(A+ � {r+}) ord or x:(A+ � {r+}) ord for any A+.

Thus, defunctionalization and uncurrying work well together: if we replace the variable dec-
laration x:(p+ � q+ � {r+}) ord with the suspended ordered proposition x:〈cont〉 ord and add
a rule run cont : cont� p+ � q+ � {r+}, that rule can then be uncurried to get the equivalent
rule p+ • cont • q+ � {r+}.

If we uncurry the defunctionalized specification for CBV evaluation from the previous sec-
tion, we get the SLS specification shown in Figure 6.5. This flat specification closely and ade-
quately represents the abstract machine semantics from the beginning of this chapter, but before
proving adequacy in Section 6.3, we will make one more change to the semantics.

6.2.3 From many predicates to many frames

This last change we make appears to be largely cosmetic, but it will facilitate, in Section 6.5.4
below, the modular extension of our semantics with recoverable failure.

The defunctionalization procedure introduces many new atomic propositions. The two pred-
icates introduced in the call-by-value specification were called cont app1 and cont app2, and
a larger specification will, in general, introduce many more. The one last twist we make is to
observe that, instead of introducing a new ordered atomic proposition cont t for each iteration of
the defunctionalization procedure, it is possible to introduce a single type (frame : type) and a
single atomic proposition (cont : frame→ prop ord).

With this change, each iteration of the defunctionalization procedure adds a new constant
with type Πy1:τ1 . . .Πym:τm. frame to the signature instead of a new atomic proposition with
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eval: exp -> prop ord.
retn: exp -> prop ord.
cont: frame -> prop ord.

app1: exp -> frame.
app2: (exp -> exp) -> frame.

ev/lam: eval (lam \x. E x) >-> {retn (lam \x. E x)}.

ev/app: eval (app E1 E2) >-> {eval E1 * cont (app1 E2)}.

ev/app1: retn (lam \x. E x) * cont (app1 E2)
>-> {eval E2 * cont (app2 \x. E x)}.

ev/app2: retn V2 * cont (app2 \x. E x) >-> {eval (E V2)}.

Figure 6.6: A first-order ordered abstract machine semantics for CBV evaluation

kind Πy1:τ1 . . .Πym:τm. prop ord. Operationally, these two approaches are equivalent, but it fa-
cilitates the addition of control features when we can modularly talk about all of the atomic
propositions introduced by defunctionalization as having the form contF for some term F of
type frame.

The ordered abstract machine resulting from this version of defunctionalization and uncurry-
ing is shown in Figure 6.6; this specification can be compared to the one in Figure 6.5.

6.3 Adequacy with abstract machines

The four-rule abstract machine specification given at the beginning of this chapter is adequately
represented by the derived SLS specification in Figure 6.6. For terms and for deductive compu-
tations, adequacy is a well-understood concept: we know what it means to define an adequate
encoding function peq = t from “on-paper” terms ewith (potentially) variables x1, . . . , xn free to
LF terms t where x1:exp, . . . , xn:exp ` t : exp, and we know what it means to adequately encode
the judgment e ⇓ v as a negative atomic SLS proposition ev peq pvq and to encode derivations of
this judgment to SLS terms N where ·; · `Σ N : 〈ev peq pvq〉 [HHP93, HL07]. In Section 4.4 we
discussed the methodology of adequacy and applied it to the very simple push-down automata
from the introduction. In this section, we will repeat this development for Figure 6.6. The gen-
erative signature itself has a slightly different character, but beyond that our discussion closely
follows the contours of the adequacy argument from Section 4.4.

Recall the definition of states s, frames f , and stacks k from the beginning of this chapter.
Our first step will be to define an interpretation function ppsqq = ∆ from abstract machine states
s to process states ∆ so that, for example, the state

((. . . (halt;2 e1) . . .); (λx.en)2)� v
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value: exp -> prop.
value/lam: value (lam \x. E x).

gen: prop ord.
gen/eval: gen >-> {eval E}.
gen/retn: gen * !value V >-> {retn V}.
gen/cont: gen >-> {gen * cont F}.

Figure 6.7: The generative signature ΣGen describing states ∆ that equal ppsqq for some s

is interpreted as the process state

y:〈retn pvq〉, xn:〈cont (app2λx.penq)〉, . . . , x1:〈cont (app1 pe1q)〉,

We also define a generative signature that precisely captures the set of process states in the image
of this translation. Having done so, we prove that the property that encoded abstract machine
states ppsqq;∗ΣCBV

∆′, where ΣCBV stands for the signature in Figure 6.6, only when ∆′ = pps′qq
for some abstract machine state s′. Then, the main adequacy result, that the interpretation of state
s steps to the interpretation of state s′ if and only if s 7→ s′, follows by case analysis.

6.3.1 Encoding states
Our first goal is to describe a signature Σgen with the property that if x:〈gen〉 ;∗ΣGen

∆ and
∆�ΣCBV

, then ∆ encodes an abstract machine state s. A well-formed process state that represents
an abstract machine state ((. . . (halt; f1); . . .); fn)� e has the form

y:〈eval peq〉, xn:〈cont pfnq〉, . . . , x1:〈cont pf1q〉

where p2 e2q = app1 pe2q and p(λx.e)2q = app2 (λx.peq). A well-formed process state
representing a state k � v has the same form, but with retn pvq instead of eval peq. We also
stipulate that k � v is only well-formed if v is actually a value – in our current specifications, the
only values are functions pλx.eq = lamλx.peq.

The simplest SLS signature that encodes well-formed states has the structure of a context-free
grammar like the signature that encoded well-formed PDA states in Figure 4.15. The judgment
value peq captures the refinement of expressions e that are values. In addition to the four declara-
tions above, the full signature Σgen includes all the type, proposition, and constant declarations
from Figure 6.6, but none of the rules.

Note that this specification cannot reasonably be run as a logic program, because the variables
E, V and F appear to be invented out of thin air. Rather than traces in these signatures being
produced by some concurrent computation (such as forward chaining), they are produced and
manipulated by the constructive content of theorems like the ones in this section.

Theorem 6.5 (Encoding). Up to variable renaming, there is a bijective correspondence between
abstract machine states s and process states ∆ such that T :: (x:〈gen〉 ord) ;∗ΣGen ∆ and
∆�ΣPDA

.
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The proof of Theorem 6.5 follows the structure of Theorem 4.6: we first define context
encoding functions ppsqq and ppkqq.

∗ ppk � eqq = y:〈eval peq〉, ppkqq
∗ ppk � vqq = y:〈retn pvq〉, ppkqq
∗ pphaltqq = ·
∗ ppk; fqq = xi:〈cont pfq〉, ppkqq

It is simple to observe that the encoding function is injective (that ppsqq = pps′qq if and only
if s = s′), so injectivity boils down to showing that every state s can be generated as a trace
psq = T :: (x:〈gen〉) ;∗ΣGen

ppsqq. Surjectivity requires us to do induction on the structure
of T and case analysis on the first steps in T . Both steps require a lemma that the notion of
value expressed by the predicate value in ΣGen matches the notion of values v used to define
well-formed states k � v.

6.3.2 Preservation and adequacy
Generated world preservation proceeds as in Section 4.4.3 and Theorem 4.7; this theorem has a
form that we will consider further in Chapter 9.

Theorem 6.6 (Preservation). If T1 :: (x:〈gen〉) ;∗ΣGen ∆1, ∆1�ΣCBV
, and S :: ∆1 ;ΣCBV ∆2,

then T2 :: (x:〈gen〉) ;∗ΣGen
∆2.

The proof proceeds by enumerating the synthetic transitions possible under ΣCBV , performing
inversion on the structure of the trace T1, and using the results to construct the necessary result.
This is the most interesting part of the adequacy proof. With this property established, the final
step is a straightforward enumeration as Theorem 4.8 in Section 4.4.4 was.

Theorem 6.7 (Adequacy of the transition system). ppsqq;ΣCBV
pps′qq if and only if s 7→ s′.

Again, the proof is a straightforward enumeration, and again, an immediate corollary of Theo-
rems 6.5-6.7 is the stronger adequacy result that if ppsqq ;ΣCBV

∆ then ∆ = pps′qq for some s′

such that s 7→ s′.

6.4 Exploring the image of operationalization
The examples given in the previous section all deal with call-by-value semantics for the untyped
lambda calculus, which has the property that any expression will either evaluate forever or will
eventually evaluate to a value λx.e. We now want to discuss ordered abstract machines with
traces that might get stuck. One way to raise the possibility of stuck states is to add values besides
λx.e. In Figure 6.8 we present an extension to Figure 6.6 with some of the features of a pure
“Mini-ML” functional programming language: fixed-point recursion (pfixx.eq = fixλx.peq),
units and pairs (p〈〉q = unit, p〈e1, e2〉q = pair pe1q pe2q), projections (pe.1q = fst peq), pe.2q =
snd peq), and natural numbers (pzq = zero, ps eq = succ peq). The natural semantics is given
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[fixx.e/x]e ⇓ v
fixx.e ⇓ v

〈〉 ⇓ 〈〉

e1 ⇓ v1 e2 ⇓ v2

〈e1, e2〉 ⇓ 〈v1, v2〉

e ⇓ 〈v1, v2〉
e.1 ⇓ v1

e ⇓ 〈v1, v2〉
e.2 ⇓ v2

z ⇓ z

e ⇓ v
s e ⇓ s v

ev/fix: eval (fix (\x. E x))
>-> {eval (E (fix (\x. E x)))}.

ev/unit: eval unit >-> {retn unit}.

ev/pair: eval (pair E1 E2)
>-> {eval E1 * eval E2 * cont pair1}.

ev/pair1: retn V1 * retn V2 * cont pair1
>-> {retn (pair V1 V2)}.

ev/fst: eval (fst E) >-> {eval E * cont fst1}.
ev/fst1: retn (pair V1 V2) * cont fst1 >-> {retn V1}.

ev/snd: eval (snd E) >-> {eval E * cont snd1}.
ev/snd1: retn (pair V1 V2) * cont snd1 >-> {retn V2}.

ev/zero: eval zero >-> {retn zero}.

ev/succ: eval (succ E) >-> {eval E * cont succ1}.
ev/succ1: retn V * cont succ1 >-> {retn (succ V)}.

Figure 6.8: Semantics of some pure functional features

on the left-hand side of that figure, and the operationalized and defunctionalized ordered abstract
machine that arises from (an SLS encoding of) that natural semantics is given on the right.

Note that, facilitated by the nondeterminism inherent in operationalization, we chose parallel
evaluation of pairs even though the execution of functions is sequential in Figure 6.6. Traditional
abstract machine semantics are syntactic and do not handle parallel evaluation; therefore, it is
not possible to show that this ordered abstract machine adequately encodes a traditional abstract
machine presentation of Mini-ML.

As we discussed in Chapter 4, when we treat a natural semantics specification as an inductive
definition, only the behavior of terminating computations can be observed, and it is not possible
to distinguish a non-terminating term like fixx.x from a stuck term like z.1 without relying on
a characterization of partial proofs. This is one of the problems that Leroy and Grall sought
to overcome in their presentation of coinductive big-step operational semantics [LG09]. They
defined the judgment e ⇑∞ coinductively; therefore it is easy to express the difference between
non-terminating terms (fixx.x ⇑∞) and stuck ones (there is no v such that z.1 ⇓ v or z.1 ⇑∞).

The translation of natural semantics into ordered abstract machines also allows us to distin-
guish fixx.x from z.1. The former expression generates a trace that can always be extended:

x1:〈eval (fixλx.x)〉; x2:〈eval (fixλx.x)〉; x3:〈eval (fixλx.x)〉; . . .

whereas the latter gets stuck and can make no more transitions:

x1:〈eval (fst zero)〉; x2:〈eval zero〉, y:〈cont fst1〉; x3:〈retn zero〉, y:〈cont fst1〉 6;
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e1 ⇓ v
e1 #? e2 ⇓ v

e2 ⇓ v
e1 #? e2 ⇓ v

ev/choose1: eval (choose E1 E2)
>-> {eval E1}.

ev/choose2: eval (choose E1 E2)
>-> {eval E2}.

Figure 6.9: Semantics of nondeterministic choice

Because (x3:〈retn zero〉, y:〈cont fst1〉) is not a final state – only states consisting of a single
retn peq proposition are final – this is a stuck state and not a completed computation.

Thus, for deterministic semantics, both coinductive big-step operational semantics and the
operationalization transformation represent ways of reasoning about the difference between non-
termination and failure in a natural semantics. Our approach has the advantage of being auto-
matic rather than requiring the definition of a new coinductive relation e ⇑∞, though it would
presumably be possible to consider synthesizing the definition of e ⇑∞ from the definition of
e ⇓ v by an analogue of our operationalization transformation.

In Section 6.4.1, we discuss the advantages that operationalization has in dealing with nonde-
terministic language features. These advantages do come with a cost when we consider natural
semantics specifications that make deterministic choices, which we discuss in Section 6.4.2.

6.4.1 Arbitrary choice and failure

For the purposes of illustration, we will extend the language of expressions with a nondetermin-
istic choice operator pe1 #? e2q = choose pe1q pe2q). The two natural semantics rules for this
extension and their (tail-recursion optimized) operationalization are shown in Figure 6.9.

We need to think about the desired semantics of expressions like (λy. y)#? z.1 – if the first
subexpression (λy. y) is chosen for evaluation, then the expression evaluates to a value, but if the
second subexpression z.1 is chosen, then the evaluation gets stuck. Small-step intuitions about
language safety say that this is a possibility we should be able to express, if only to exclude it
with an appropriately designed type system and type safety proof. The ordered abstract machine
semantics allows us to produce traces where x:〈eval p(λy. y)#? z.1q〉;∗ y:〈eval (lamλy.y)〉 and
where x:〈eval p(λy. y)#? z.1q〉 ;∗ (x′:〈retn zero〉, y:〈cont fst1〉) 6; as we would hope. Natural
semantics specifications (including coinductive big step operational semantics) merely conclude
that (λy. y y)#? z.1 ⇓ (λy. y y). Capturing the stuck behavior in this situation would require
defining an extra inductive judgment capturing all the situations where e can get stuck, which is
verbose and error-prone [Har12, Section 7.3].

Our ability to reason about evaluations that go wrong is an artifact the fact that SLS allows us
to talk about traces T that represent the process of incomplete proof search in addition to talking
about complete proofs. A trace that reaches a state that is not a final retn pvq state but that cannot
step further, like T :: (x:〈eval p(λy. y)#? z.1q〉) ;∗ (x′:〈retn zero〉, y:〈cont fst1〉), corresponds
to a point at which backward chaining proof search must backtrack (in a backtracking interpreter)
or immediately fail (in a flat resolution interpreter). The trace above corresponds semantically to
a failing or going-wrong evaluation, implying that backtracking is not the correct choice. Such
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ev/casez: eval (case E Ez (\x. Es x))
>-> {eval E * (retn zero >-> {eval Ez})}.

ev/cases: eval (case E Ez (\x. Es x))
>-> {eval E * (All V’. retn (succ V’) >-> {eval (Es V’)})}.

Figure 6.10: Problematic semantics of case analysis (not defunctionalized)

ev/casez: eval (case E Ez (\x. Es x))
>-> {eval E * cont (casez Ez)}.

ev/casez1: retn zero * cont (casez Ez)
>-> {eval Ez}.

ev/cases: eval (case E Ez (\x. Es x))
>-> {eval E * cont (cases \x. Es x)}.

ev/cases1: retn (succ V) * cont (cases \x. Es x)
>-> {eval (Es V)}.

Figure 6.11: Problematic semantics of case analysis (defunctionalized)

an evaluation ought to fail, and therefore faithfully capturing the semantics of nondeterministic
choice e1 #? e2 with a natural semantics requires us to use a particular operational interpretation
of the natural semantics that is based on non-backtracking backward chaining (flat resolution).
The operationalization transformation allows us to concretize this particular operational strategy
with traces.

6.4.2 Conditionals and factoring

It is great that we’re able to reason about nondeterministic specifications in the output of the
operationalization transformation! However, a complication arises if we try to to encode a Mini-
ML feature that was conspicuously missing from Figure 6.8: the elimination form for natural
numbers pcase e of z⇒ ez | sx⇒ esq = case peq pezq (λx.pesq). The usual natural semantics
for case analysis look like this:

e ⇓ z ez ⇓ v
(case e of z⇒ ez | sx⇒ es) ⇓ v

ev/casez
e ⇓ s v′ [v′/x]es ⇓ v

(case e of z⇒ ez | sx⇒ es) ⇓ v
ev/cases

If we operationalize this specification directly, we get an ordered abstract machine shown in
Figure 6.10 before defunctionalization and in Figure 6.11 after defunctionalization. This spec-
ification is nondeterministic much as the specification of e1 #? e2 was: we can evaluate a case
expression either with rule ev/casez, which effectively predicts that the answer will be zero, or
with rule ev/cases, which effectively predicts that the answer will be the successor of some value.
But this means that it is possible to get stuck while executing an intuitively type-safe expression
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if we predict the wrong branch:

x1:〈eval (case zero ez λx. es)〉
; x2:〈eval zero〉, y2:〈cont (casesλx. es)〉
; x3:〈retn zero〉, y2:〈cont (casesλx. es)〉
6; (!!!)

This is a special case of a well-known general problem: in order for us to interpret the usual
natural semantics specification (rules ev/casez and ev/cases above) as an operational specifica-
tion, we need backtracking. With backtracking, if we try to evaluate e using one of the rules and
fail, a backtracking semantics means that we will apply the other rule, re-evaluating the scrutinee
e to a value. Backtracking is therefore necessary for a correct interpretation of the standard rules
above, even though it is incompatible with a faithful account of nondeterministic choice! Some-
thing must give: we can either give up on interpreting nondeterministic choice correctly or we
can change the natural semantics for case analysis. Luckily, the second option is both possible
and straightforward.

It is possible to modify the natural semantics for case analysis to avoid backtracking by a
transformation called factoring. Factoring has been expressed by Poswolsky and Schürmann
as a transformation on functional programs in a variant of the Delphin programming language
[PS03]. It can also be seen as a generally-correct logical transformation on Prolog, λProlog, or
Twelf specifications, though this appears to be a folk theorem. We factor this specification by
creating a new judgment (v′, ez, x.es) ⇓? v that is mutually recursive with the definition of e ⇓ v.

e ⇓ v′ (v′, ez, x.es) ⇓? v

(case e of z⇒ ez | sx⇒ es) ⇓ v
ev/case

ez ⇓ v
(z, ez, x.es) ⇓? v

casen/z
[v′/x]es ⇓ v

(s v′, ez, x.es) ⇓? v
casen/s

This natural semantics specifications is provably equivalent to the previous one we gave when
rules are interpreted as inductive definitions. Not only are the same judgments e ⇓ v derivable,
the set of possible derivations are isomorphic, and it is possible to use the existing metatheoretic
machinery of Twelf to verify this fact. In fact, the two specifications are also equivalent if we
understand natural semantics in terms of the success or failure backtracking proof search, though
the factored presentation avoids redundantly re-evaluating the scrutinee. It is only when interpret
the natural semantics specification through the lens of non-backtracking backward chaining (also
called flat resolution) that the specifications differ.

The operationalization of these rules is shown in Figure 6.12 before defunctionalization and
in Figure 6.13 after defunctionalization. In those figures, the standard evaluation judgment
e ⇓ v is given the now-familiar evaluation and return predicates eval and retn. The judgment
(v′, ez, x.es) ⇓? v is given the evaluation predicate casen, and shares the return predicate retn
with the judgment e ⇓ v. This is a new aspect of operationalization. It is critical for us to assign
each predicate ac uniquely to an evaluation predicate eval a – without this condition, soundness
(Theorem 6.4) would fail to hold. However, we never rely on ac being uniquely assigned a return
predicate. When return predicates that have the same type are allowed to overlap, it enables the
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ev/case: eval (case E Ez (\x. Es x))
>-> {eval E *

(All V’. retn V’ >-> {casen V’ Ez (\x. Es x)})}.

casen/z: casen zero Ez (\x. Es x) >-> {eval Ez}.
casen/s: casen (succ V’) Ez (\x. Es x) >-> {eval (Es V’)}.

Figure 6.12: Revised semantics of case analysis (not defunctionalized)

ev/case: eval (case E Ez (\x. Es x))
>-> {eval E * cont (case1 Ez (\x. Es x))}.

ev/case1: retn V’ * cont (case1 Ez (\x. Es x))
>-> {casen V’ Ez (\x. Es x)}.

casen/z: casen zero Ez (\x. Es x) >-> {eval Ez}.
casen/s: casen (succ V’) Ez (\x. Es x) >-> {eval (Es V’)}.

Figure 6.13: Revised semantics of case analysis (defunctionalized)

tail-call optimization described in Section 6.1.3 to apply even when the tail call is to a different
procedure. This, in turn, greatly simplifies Figures 6.12 and 6.13.

6.4.3 Operationalization and computation

When we described the semantics of nondeterministic choice e1 #? e2, our operational intuition
was to search either for a value such that e1 ⇓ v or a value such that e2 ⇓ v. This implies an op-
erational interpretation of natural semantics as flat resolution as opposed to backward chaining
with backtracking. Maintaining this non-backtracking intuition means that some natural seman-
tics specifications, such as those for case analysis, need to be revised. Such revisions are always
possible by factoring, however, so we can conclude that in the context of natural semantics spec-
ifications the form of deductive computation (Section 4.6.1) that we are most interested in is flat
resolution.

Under the operationalization transformation, traces represent the internal structure of proof
search, and a non-extendable (and non-final) trace represents a situation in which backward
chaining search backtracks and where flat resolution search gives up. If we search for a trace
(x:〈eval peq〉) ;∗ (y:〈retn pvq〉) in an operationalized specification using committed-choice
forward chaining, the operational behavior will coincide with the behavior of flat resolution in
the original specification. Alternatively, if we take the exhaustive search or model checking inter-
pretation of an operationalized specification and attempt to answer, one way or the other, whether
a trace of the form (x:〈eval peq〉) ;∗ (y:〈retn pvq〉) can be constructed, then the operational be-
havior of the interpreter will coincide with the behavior of backward chaining with backtracking
in the original specification.

Therefore, operationalization can be said to connect backward chaining in the deductive frag-
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ment of SLS to forward chaining in the concurrent fragment of SLS. More precisely, opera-
tionalization both connects flat resolution to committed-choice forward chaining and connects
backtracking backward chaining to the exhaustive search interpretation of forward chaining.

6.5 Exploring the richer fragment

Work by Danvy et al. on the functional correspondence has generally been concerned with ex-
ploring tight correspondences between different styles of specification. However, as we dis-
cussed in Section 5.3, one of the main reasons the logical correspondence in SLS is interesting
is because, once we translate from a less expressive style (natural semantics) to a more expres-
sive style (ordered abstract machine semantics), we can consider new modular extensions in the
more expressive style that were not possible in the less expressive style. As we discussed in the
introduction, extending a natural semantics with state requires us to revise every existing rule,
whereas a SSOS specification can be extended in a modular fashion: we just insert new rules
that deal with state. The opportunities for modular extension are part of what distinguishes the
logical correspondence we have presented from the work by Hannan and Miller [HM92] and
Ager [Age04]. Both of those papers translated natural semantics into a syntactic specification of
abstract machines; such specifications are not modularly extensible to the degree that concurrent
SLS specifications are.

The ordered abstract machine style of specification facilitates modular extension with fea-
tures that involve state and parallel evaluation. We have already seem examples of the latter: the
operationalization translation (as extended in Section 6.1.4) can put a natural semantics specifi-
cation into logical correspondence with either a sequential ordered abstract machine semantics
or a parallel ordered abstract machine semantics, and our running example evaluates pairs in par-
allel. In this section, we will consider some other extensions, focusing on stateful features like
mutable storage (Section 6.5.1) and call-by-need evaluation (Section 6.5.2). We will also discuss
the semantics of recoverable failure in Section 6.5.4. The presentation of recoverable failure
will lead us to consider a point of non-modularity: if we want to extend our language flexibly
with non-local control features like recoverable failure, the parallel operationalization translation
will make this difficult or impossible. A more modular semantics of parallel evaluation will be
presented in Section 7.2.1.

This section will present extensions to the sequential, first-order abstract machine for parallel
evaluation presented in Figure 6.6. We first presented most of these specifications in [PS09].

6.5.1 Mutable storage

Classic stateful programming languages feature mutable storage, which forms the basis of im-
perative algorithms. We will consider ML-style references, which add four new syntax forms to
the language. The first three create (pref eq = ref peq), dereference (p!eq = get peq), and update
(pe1 := e2q = set pe1q pe2q) dynamically allocated cells in the heap. The fourth, loc l, is a value
that represents pointers to allocated memory. The term l is of a type mutable loc that has no
constructors; locations l can only be allocated at runtime.
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cell: mutable_loc -> exp -> prop lin.

ev/loc: eval (loc L)
>-> {retn (loc L)}.

ev/ref: eval (ref E)
>-> {eval E * cont ref1}.

ev/ref1: retn V * cont ref1
>-> {Exists l. $cell l V * retn (loc l)}.

ev/get: eval (get E)
>-> {eval E * cont get1}.

ev/get1: retn (loc L) * cont get1 * $cell L V
>-> {retn V * $cell L V}.

ev/set: eval (set E1 E2)
>-> {eval E1 * cont (set1 E2)}.

ev/set1: retn (loc L) * cont (set1 E2)
>-> {eval E2 * cont (set2 L)}.

ev/set2: retn V2 * cont (set2 L) * $cell L _
>-> {retn unit * $cell L V2}.

Figure 6.14: Semantics of mutable storage

We also introduce a new linear atomic proposition cell l v representing a piece of allocated
memory (at location l) and its contents (the value v). Recall that, without mutable state or
parallel computation, we maintain the invariant that the process state ∆ is made up of either
a eval e proposition or a retn v proposition to the left of some number of cont f propositions.
Once we add mutable state, the first-order (or LF) context Ψ, which has been empty in the SSOS
semantics we have considered so far, becomes non-empty. We maintain the invariant that the
context has one mutable location for each allocated cell:

(l1:mutable loc, . . . , ln:mutable loc; x1:〈cell l1 v1〉, . . . , xn:〈cell ln vn〉,∆)

where ∆ has the form described before. Because the cell li vi propositions are linear, the order of
cells and their placement relative to ∆ are irrelevant.

The semantics of mutable storage are presented in Figure 6.14. Rule ev/get in that figure
takes an expression getE and evaluates E to a value of the form locL. After that, rule ev/get1
takes the (unique, by invariant) cell associated with the location L, reads its value, and restores
the cell to the context. The synthetic transition associated with ev/get1 is as follows:

(Ψ; Θ{{x:〈retn (loc l)〉, y:〈cont get1〉, z:〈cell l v〉}})
; (Ψ; Θ{w:〈retn v〉 ord , z′:〈cell l v〉 eph})

Again, it is critical, when reading this transition, to account for the fact that retn and cont are
ordered predicates but cell is a linear predicate.

182



October 15, 2012
DRAFT

The set rules are similar, except that we also evaluate a new value v2 and restore that value
to the process state instead of the value previously contained in the cell. We mention cell l in
the premise of ev/set2 only to consume the old cell associated with l before we replace it with
something new. If multiple parts of a process state are trying to consume the same resource in
order to set the value of a cell concurrently, we have a race condition; this possibility is discussed
below.

Finally, the ref rules evaluate the subexpression to a value v and then, in rule ev/ref1, allocate
a new cell to hold that value. This new cell, according to our context invariant, needs to be
associated with a new variable l, which we generate with existential quantification in the head
of the ev/ref1 rule. The synthetic transition associated with ev/ref1 therefore has an extended
first-order context after the transition:

(Ψ; Θ{{x:〈retn v〉, y:〈cont ref1〉}})
; (Ψ, l:mutable loc; Θ{w:〈retn (loc l)〉 ord , z:〈cell l v〉 eph})

Existential angst

Our semantics of mutable storage uses existential quantification as a symbol generator to conjure
up new locations. However, it is important to remember that LF variables in Ψ are defined by
substitution, so if there is a step (Ψ, l1:loc, l2:loc; ∆) ; (Ψ, l1:loc, l2:loc; ∆′), it must also be the
case that (Ψ, l1:loc; [l1/l2]∆) ; (Ψ, l1:loc; [l1/l2]∆′). Therefore, there can be no SLS proposi-
tion or synthetic transition that holds only if two variables are distinct, since by definition the
same proposition or synthetic transition would hold when we unified the two variables. This, in
turn, means our specification of Mini-ML with mutable references cannot be further extended to
include the tests for reference equality that languages like Standard ML or OCaml have, since
locations are described only as variables.

The workaround to this problem is to maintain an association between distinct variables l
and distinct concrete terms (usually distinct natural numbers) in the process state. It is possible
to use generative signatures to enforce that all well-formed states associate distinct variables
with distinct concrete terms, as described in Section 9.4.4. In such a specification, we can use
inequality of the concrete terms as a proxy for inequality of the variables. It will still be the case
that unifying distinct variables preserves transitions, but we can ensure that any process state
obtained by unifying distinct variables is not well-formed according to the generative invariant.

I believe that a substructural treatment of nominal quantification could be incorporated into
SLS and would allow for locations to be handled in a more satisfying way along the lines of pro-
posals by Cheney and Harper [Che12, Har12]. This extension to the SLS framework is beyond
the scope of this thesis, however. Luckily, aside from being unable to elegantly represent tests for
pointer inequality or the entirety of Harper’s Modernized Algol [Har12, Chapter 35], we will not
miss name generation facilities too much in the context of this thesis. One of the most important
use cases of name generation and nominal abstraction is in reasoning about logical specifica-
tions within a uniform logic [GMN11], and this thesis does not consider a uniform metalogic for
SLS specifications.
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Race conditions

Because ordered abstract machine semantics allow us to add both state and parallelism to speci-
fications, the issue of race conditions, which arise whenever there is both concurrency and state,
should be briefly addressed. Fundamentally, SLS and SSOS specifications have no notion of
atomicity beyond the one provided by focusing and synthetic inference rules, and so race condi-
tions can arise.

(l : mutable loc; x1:〈cell l zero〉 eph,

x2:〈retn (succ zero)〉 ord , x3:〈cont (set2 l)〉 ord ,

x4:〈retn (succ (succ zero))〉 ord , x5:〈cont (set2 l)〉 ord ,

x6:〈cont pair1〉 ord)

Figure 6.15: A racy process state

A process state that starts out containing only eval p(λx.〈setx (s z), setx (s(s z))〉)(ref z)q,
for example, can evaluate to the process state in Figure 6.15. Two different transitions out of this
state can both manipulate the data associated with the mutable location l – this is a race condition.
Reasoning about race conditions (and possibly precluding them from well-formed specifications)
is not within the scope of this thesis. The applicability of generative invariants discussed in
Chapter 9 to race conditions is, however, certainly an interesting topic for future work. If we set
up the semantics such that a situation like the one above could nondeterministically transition to
an ill-formed error state, then it would not be possible to prove the preservation of the generative
invariant unless the well-formedness criteria expressed by that invariant precluded the existence
of race conditions.

Let us consider what happens when we operationalize a natural semantics that uses state.
Recall that the addition of an imperative counter to the natural semantics for semantics for CBV
evaluation was presented as a non-modular extension, because we had to revise the existing rules
for functions and application as follows:

(λx.e, n) ⇓ (λx.e, n)

(e1, n) ⇓ (λx.e, n1) (e2, n1) ⇓ (v2, n2) ([v2/x]e2, n2) ⇓ (v, n′)

(e1 e2, n) ⇓ (v, n′)

In the pure CBV specification, the two premises e1 ⇓ λx.e and e2 ⇓ v2 could be treated as in-
dependent and could be made parallel by the operationalization transformation, but the two
premises (e1, n) ⇓ (λx.e, n1) and (e2, n1) ⇓ (v2, n2) are not: the first premise binds n1, which
appears as an input argument to the second premise. Therefore, from the perspective of opera-
tionalization, parallel evaluation and state are simply incompatible: having state in the original
specification will preclude parallel evaluation (and therefore race conditions) in the operational-
ized specification.

Ordered abstract machine semantics allow for the modular composition of mutable storage
and parallel evaluation, in that the original specifications can be simply composed to give a
semantically meaningful result. However, composing mutable storage and parallel evaluation
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leads to the possibility of race conditions (which can be represented in SLS), indicating that this
composition is not always a good idea if we want to avoid race conditions. Adding state to a
natural semantics specification, on the other hand, will force operationalization to produce an
ordered abstract machine without parallelism.

6.5.2 Call-by-need evaluation
Mutable references were an obvious use of ambient state, and we were able to extend the or-
dered abstract machine obtained from the operationalization transformation by simply adding
new rules for mutable references (though this did introduce the possibility of race conditions).
Another completely modular extension to our (now stateful) Mini-ML language is call-by-need
evaluation. The basic idea in call-by-need evaluation is that an expression is not evaluated ea-
gerly; rather, instead, it is stored until the value of that expression is demanded. Once a value is
needed, it is computed and the value of that computation is memoized; therefore, a suspended
expression will be computed at most once.

This section considers two rather different implementations of by-need evaluation: the first,
recursive suspensions, presents itself to the programmer as a different sort of fixed-point operator,
and the second, lazy call-by-need, presents itself to the programmer as a different sort of function.
Both approaches to lazy evaluation are based on Harper’s presentation [Har12, Chapter 37].

Recursive suspensions

Recursive suspensions (Figure 6.16) replace the fixed-point operator fixx.e with a thunked ex-
pression pthunkx.eq = thunk (λx. peq). Whereas the fixed-point operator returns a value (or
fails to terminate), thunked expressions always immediately return a value issusp l, where l is a
location of type bind loc. This location is initially associated with a linear atomic proposition
susp l (λx.peq) (rule ev/thunk).

When we apply the force operator to an expression that returns issusp l for the first time, the
location l stops being associated with a linear atomic proposition of the form susp l (λx.peq) and
becomes associated with a linear atomic proposition of the form blackhole l (rule ev/force1a).
This blackhole l proposition can be used to detect when an expression tries to directly reference
its own value in the process of computing to a value. In this example, such a computation will end
up stuck, but the comparison with fixx.x suggests that the semantically correct option is failing to
terminate instead. A rule with the premise retn (issusp l) • cont force1 • blackhole l could instead
be used to loop endlessly or signal failure. This possibility is represented in Figure 6.16 by the
commented-out rule fragment – #| this is comment syntax |#.

Once a suspended expression has been fully evaluated (rule ev/force2b), the black hole is
removed and the location l is persistently associated with the value v; future attempts to force the
same suspended expression will trigger rule ev/force1b instead of ev/force1a and will immedi-
ately return the memoized value.

The last four rules in Figure 6.16 (and the one commented-out rule fragment) are all part
of one multi-stage protocol. It may be enlightening to consider the refunctionalization of Fig-
ure 6.16 presented in Figure 6.17. This rule has a conjunctive continuation (using the additive
conjunction connective A− N B−) with one conjunct for two of the three atomic propositions
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susp: bind_loc -> (exp -> exp) -> prop lin.
blackhole: bind_loc -> prop lin.
bind: bind_loc -> exp -> prop pers.

ev/susp: eval (issusp L) >-> {retn (issusp L)}.

ev/thunk: eval (thunk \x. E x)
>-> {Exists l. $susp l (\x. E x) * retn (issusp l)}.

ev/force: eval (force E)
>-> {eval E * cont force1}.

ev/force1a: retn (issusp L) * cont force1 * $susp L (\x. E’ x)
>-> {eval (E’ (issusp L)) * cont (bind1 L) *

$blackhole L}.

ev/force2a: retn V * cont (bind1 L) * $blackhole L
>-> {retn V * !bind L V}.

#| STUCK - retn (issusp L) * cont force1 * $blackhole L >-> ??? |#

ev/force1b: retn (issusp L) * cont force1 * !bind L V
>-> {retn V}.

Figure 6.16: Semantics of call-by-need recursive suspensions

a bind loc can be associated with: the linear proposition susp l (λx.e), the linear proposition
blackhole l (which cannot be handled by the continuation and so will result in a stuck state), and
the persistent proposition bind l v.

Lazy evaluation

Recursive suspensions must be forced explicitly; an alternative to recursive suspensions, which
uses very similar specification machinery but that presents a different interface to the program-
mer, is lazy call-by-need function evaluation. Lazy evaluation better matches the semantics of
popular call-by-need languages like Haskell. For this semantics, we will not create a new abstract
location type like mutable loc or bind loc; instead, we will associate suspended expressions (and
black holes and memoized values) with free expression variables of type exp.

We can treat lazy call-by-need functions (lazylamλx.e) as an extension to the language that
already includes call-by-value functions (lamλx.e) and application; this extension is described
in Figure 6.18. Lazy functions are values (rule ev/lazylam), but when a lazy function is returned
to a frame p2 e2q = app1 pe2q, we do not evaluate pe2q to a value immediately. Instead, we
create a free variable x of type exp and substitute that into the lazy function.

Free variables x are now part of the language of expressions that get evaluated, though they
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ev/force: eval (force E)
>-> {eval E *

((All L. All E’.
retn (issusp L) * $susp L (\x. E’ x)
>-> {eval (E’ (issusp L)) * $blackhole L *

(All V. retn V * $blackhole L
>-> {retn V * !bind L V})})

#| STUCK - & (All L. retn (issusp L) * $blackhole L >-> ???) |#
& (All L. All V.

retn (issusp L) * !bind L V >-> {retn V}))}.

Figure 6.17: Semantics of call-by-need recursive suspensions, refunctionalized

susp’: exp -> exp -> prop lin.
blackhole’: exp -> prop lin.
bind’: exp -> exp -> prop pers.

ev/lazylam: eval (lazylam \x. E x) >-> {retn (lazylam \x. E x)}.

ev/applazy: retn (lazylam \x. E x) * cont (app1 E2)
>-> {Exists x:exp. eval (E x) * $susp’ x E2}.

ev/susp’: eval X * susp’ X E
>-> {$blackhole’ X * eval E * cont (bind1’ E)}.

ev/susp1’: retn V * cont (bind1’ X) * $blackhole’ X
>-> {retn V * !bind’ X V}.

ev/bind’: eval X * !bind’ X V >-> {retn V}.

Figure 6.18: Semantics of lazy call-by-need functions

are not in the language of values that get returned. Therefore, we need some way of evaluat-
ing free variables. This is handled by the three rules ev/susp′, ev/susp1′, and ev/bind′ as be-
fore. Each free expression variable x is either associated with a unique linear atomic proposition
susp′ x e2, a black hole blackhole′ x, or a persistent binding bind′ x v.

As a final note, call-by-need evaluation is semantically equivalent to call-by-name evaluation
in a language that does not otherwise use state. Unevaluated suspensions can therefore be ignored
if they are not needed. For this reason, if SLS were extended with an affine modality, it would
be quite reasonable to view susp and susp′ as affine atomic propositions instead of linear atomic
propositions. However, as long as we restrict ourselves to considering traces rather than complete
derivations, the differences between affine and linear propositions are irrelevant.
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ev/envlam: eval (envlam \x. E x) >-> {retn (envlam \x. E x)}.

ev/appenv1: retn (envlam \x. E x) * cont (app1 E2)
>-> {Exists x. eval E2 * cont (app2’ x (E x))}.

ev/appenv2: retn V2 * cont (app2’ X E)
>-> {eval E * !bind’ X V2}.

Figure 6.19: Environment semantics for call-by-value functions

6.5.3 Environment semantics

Toninho, Caires, and Pfenning have observed that call-by-need and call-by-value can both be
seen in a larger family of sharing evaluation strategies (if and when the argument to λx.e is
evaluated, the work of evaluating that argument to a value is shared across all occurrences of x).
Call-by-name, in contrast, is called a copying evaluation strategy, since the unevaluated argument
of λx.e is copied to all occurrences of x [TCP12]. This relationship between the lazy call-by-
need semantics from Figure 6.18 and call-by-value is better presented by giving a variant of what
we called an environment semantics in [PS09].

As with the lazy call-by-name semantics, we introduce the environment semantics by creat-
ing a new function value envlam (λx. e) instead of reinterpreting the existing function expression
lam (λx. e). When a value of the form lazylam (λx. e) was returned to a frame app1 e2 in rule
ev/applazy from Figure 6.18, we immediately created a new expression variable x, suspended
the argument e2, and scheduled the function body for evaluation. When a value of the form
envlam (λx. e) is returned to a frame app1 e2 frame in rule ev/appenv1 in Figure 6.19, we like-
wise create the new expression variable x, but we suspend the function body in a frame app2′ x e
that also records the new expression variable x and schedule the argument for evaluation. Imme-
diately evaluating the argument is, of course, exactly how call-by-value evaluation is performed;
this is what makes environment semantics equivalent to call-by-value semantics. Then, when the
evaluated function argument v2 is returned to that frame (rule ev/appenv2), we create the same
persistent binding bindx v2 that was generated by rule ev/susp1′ in Figure 6.18 and proceed to
evaluate the function body. Upon encountering the free variable x in the course of evaluation,
the same rule ev/bind′ from Figure 6.18 will return the right value.

This presentation of the environment semantics is designed to look like call-by-need, and so
it creates the free variable x early, in rule ev/appenv1. It would be equally reasonable to create
the free variable x later, in rule ev/appenv2, which would result in a specification that resembles
Figure 6.6 more closely. This is what was done in [PS09] and [SP11a], and we will use a similar
specification (Figure 8.3) as the basis for deriving a control flow analysis in Section 8.4.

6.5.4 Recoverable failure

In a standard abstract machine presentation, recoverable failure can be introduced by adding
a new state s = kJ to the existing two (s = k � e and s = k � v) [Har12, Chapter 28].
Whereas k � v represents a value being returned to the stack, kJ represents failure being re-
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error: prop ord.
handle: exp -> prop ord.

ev/fail: eval fail >-> {error}.
ev/error: error * cont F >-> {error}.

ev/catch: eval (catch E1 E2) >-> {eval E1 * handle E2}.
ev/catcha: retn V * handle _ >-> {retn V}.
ev/catchb: error * handle E2 >-> {eval E2}.

Figure 6.20: Semantics of recoverable failure

turned to the stack; failure is signaled by the expression fail7 and can be handled by the expression
ptry e1 ow e2q = catch pe1q pe2q.

We can extend sequential ordered abstract machines with exceptions in a modular way, as
shown in Figure 6.20. Recall that a sequential ordered abstract machine specification is one
where there is only one ordered eval e or retn v proposition in the process state to the right of
a series of ordered cont f propositions – process states with eval peq correspond to states k � e
and process states with retn pvq correspond to states k � v.

We introduce two new ordered atomic propositions. The first, error, is introduced by rule
ev/fail. A state with an error proposition corresponds to a state kJ in traditional ordered abstract
machine specifications. Errors eat away at any cont f propositions to their right (rule ev/error).
The only thing that stops the inexorable march of an error is the special ordered atomic proposi-
tion handle e that is introduced in rule ev/catch when we evaluate the handler.

This is one case where the use of defunctionalized specifications – and, in particular, our
decision to defunctionalize with a single cont f proposition instead of inventing a new ordered
atomic proposition at every step (Section 6.2.3) – gives us a lot of expressive power. If we wanted
to add exceptions to the higher-order specification of Mini-ML, we would have to include the
possibility of an exceptional outcome in every individual rule. For instance, this would be the
rule for evaluating ps eq = succ peq:

ev/succ: eval (succ E)
>-> {eval E *

((All V. retn V >-> {retn (succ V)})
& (error >-> {error}))}.

Instead, this case is handled generically by rule ev/error in Figure 6.20, though the above speci-
fication is what we would get if we were to refunctionalize the defunctionalized specification of
core Mini-ML from Figure 6.8 extended with rule ev/error.

Failures and the parallel translation

Our semantics of recoverable failure composes reasonably well with stateful features, though
arguably in call-by-need evaluation it is undesirable that forcing a thunk can lead to errors being

7Failure could also be introduced by actions like as dividing by zero or encountering the black hole in the
commented-out case of Figure 6.16.
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raised in a non-local fashion. However, recoverable failure does not compose well with parallel
semantics as we have described them.

We assume, in rule ev/error, that we can blindly eliminate cont f frames with the ev/error
rule. If we eliminate the cont pair1 frame from Figure 6.8 in this way, it breaks the invariant that
the ordered propositions represent a branching tree written down in postfix. Recall that, without
exceptions, a piece of process state in the process of evaluating p〈e1, e2〉q = pair pe1q pe2q has
the following form:

(subgoal: evaluating e1), (subgoal: evaluating e2), y:〈cont pair1〉

If the second subgoal evaluating e2 signals an error, that error will immediately propagate to the
right, orphaning the first subgoal. Conversely, if the first subgoal signals an error, that error will
have to wait until the first subgoal completes: SLS specifications are local, and there is no local
way for the first subgoal to talk about its continuation y:〈cont pair1〉 because an arbitrary amount
of stuff (the representation of the second subgoal) is in the way. This seems to force us into
treating parallel evaluations asymmetrically: if eraise signals failure and eloop loops forever, then
the two Mini-ML pair expressions 〈eraise , eloop〉 and 〈eloop , eraise〉 are observably different. That
is arguably bad, though if we switch the relative position of e1 and e2 in the context, it can also
be seen as an implementation of the sequential semantics for exceptions followed by Manticore
[FRR08].

A fix is to modify defunctionalization to group similar propositions rather than grouping
all propositions into the single proposition cont. Specifically, we defunctionalize sequential
propositions of the form ∀x. retn v � {. . .} using one ordered atomic proposition cont f and
defunctionalize parallel propositions of the form ∀x. retn v1 • retn v2 � {. . .} using a different
ordered atomic proposition cont2 f . This lets us write rules that treat parallel continuations
generically and that only return errors when both sub-computations have completed and at least
one has signaled an error:

ev/errerr: error * error * cont2 _ >-> {error}.
ev/errretn: error * retn _ * cont2 _ >-> {error}.
ev/retnerr: retn _ * error * cont2 _ >-> {error}.

This is a big improvement, because parallel pairs are again treated symmetrically. But it’s not the
way we necessarily wanted to restore symmetry: the evaluation 〈eraise , eloop〉 and 〈eloop , eraise〉
will both loop forever, but we might wish for both of them to signal failure. The latter alternative
is not expressible in an ordered abstract machine specification.

Part of the problem is that recoverable failure is fundamentally a control feature and not a
stateful or parallel programming language feature. As a result, it is not easy to handle at the level
of ordered abstract machines, because ordered abstract machines do not give the specification
author enough access to the control structure. The destination-passing style we consider in the
next chapter, on the other hand, will give us sufficient access to control structure.

6.5.5 Looking back at natural semantics
Mutable storage, call-by-need evaluation, and the environment semantics are all modular exten-
sions to the call-by-value specification in Figure 6.6. The extensions are modular because they
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make essential use of the ambient context available to concurrent SLS specifications, introducing
new linear and persistent ordered atomic propositions that can be added to the context (and, in
the linear case, removed as well).

For extensions to sequential ordered abstract machines that are only based on extending the
state, we can consider what it would mean to reverse-engineer a natural semantics formalism that
is as extensible as the resulting ordered abstract machine. The primary judgment of such a spec-
ification is not e ⇓ v as before; rather, the primary judgment becomes {e‖µ}Ψ ⇓ {v‖µ}Ψ′ .8 The
variable contexts Ψ and Ψ′ are the same variable contexts that appear in our process states (Ψ; ∆)
and our specifications are expected to maintain the invariant that Ψ ⊆ Ψ′. The objects e and v
remain syntactic objects adequately encodable in LF, as before, whereas µ is an extensible bag
of judgments µ = J1 ⊗ . . .⊗ Jn that correspond to the propositions in our linear and persistent
context; we treat ⊗ as an associative and commutative operator (just like conjunction of linear
logic contexts). A new judgment in an SLS specification can be treated as a new member of the
syntactic class J . For instance, lazy call-by-need functions as defined in Figure 6.18 use three
judgments: x↪→e (corresponding to susp′ x e), x↪→• (corresponding to blackhole′ x), and x_v
(corresponding to bind′ x v). We can give a statefully-modular natural semantics for call-by-need
lazy functions as follows:

{λx.e‖µ}Ψ ⇓ {λx.e‖µ}Ψ

{e1‖µ}Ψ ⇓ {λx.e‖µ′}Ψ′ {e‖x↪→e2 ⊗ µ′}Ψ′,x ⇓ {v‖µ′′}Ψ′′

{e1 e2‖µ}Ψ ⇓ {v‖µ′′}Ψ′′

{e‖x↪→•⊗ µ}Ψ,x ⇓ {v‖x↪→•⊗ µ′}Ψ′,x

{x‖x↪→e⊗ µ}Ψ,x ⇓ {v‖x_v ⊗ µ′}Ψ′,x

{x‖x_v ⊗ µ}Ψ,x ⇓ {v‖x_v ⊗ µ}Ψ,x

While the definition of e ⇓ v could be directly encoded as a deductive SLS specification,
the definition of {e‖µ}Ψ ⇓ {v‖µ′}Ψ′ cannot. Nevertheless, the example above suggests that
a carefully-defined formalism for statefully-modular natural semantics specifications could be
similarly compiled into (or, indeed, defined in terms of) the operationalization of specifications
into SLS.

There is a great deal of work on special-purpose formalisms for the specification and modu-
lar extension of operational semantics. The specification above follows Harper’s development in
[Har12], and Mosses’s Modular Structural Operational Semantics (MSOS) is a similar develop-
ment [Mos04]. Previous work is primarily interested in the modular extension of small-step
structural operational semantics specifications rather than big-step natural semantics, though
Mosses does discuss the latter. The operationalization transformation applies to SOS specifi-
cations (as discussed below in Section 6.6.2), but the result is something besides an ordered
abstract machine semantics.

The functional correspondence connects structural operational semantics and abstract ma-
chines [Dan08]. A logical correspondence between SOS specifications and ordered abstract

8The notation {e‖µ}Ψ is intended to evoke Harper’s notation νΣ{e‖µ}, which is used to describe mutable
references and lazy evaluation in Chapters 36 and 37 of [Har12]. The critical semantic distinction is that our Ψ
contains variables whereas Σ contains proper symbols that are not available in SLS, as discussed in Section 6.5.1.
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#mode inc + -.
inc: nat -> nat -> prop.

inc/eps: inc eps (c eps b1).
inc/b0: inc (c N b0) (c N b1).
inc/b1: inc (c N b1) (c R b0) <- inc N R.

#mode plus + + -.
plus: nat -> nat -> nat -> prop.
plus/eN: plus eps N N.
plus/Ne: plus N eps N.
plus/b00: plus (c M b0) (c N b0) (c R b0) <- plus M N R.
plus/b01: plus (c M b0) (c N b1) (c R b1) <- plus M N R.
plus/b10: plus (c M b1) (c N b0) (c R b1) <- plus M N R.
plus/b11: plus (c M b1) (c N b1) (c R b0) <- plus M N K <- inc K R.

Figure 6.21: Backward-chaining logic program for binary addition

machines in SLS might give us insight into a modular formalism for SOS that is defined in terms
of concurrent SLS specifications, but this is left for future work.

6.6 Other applications of transformation

Thus far, we have only discussed the application of the operationalization and defunctionalization
transformations to natural semantics specifications. However, both transformations are general
and can be applied to many different specifications.

In this section, we will consider the meaning of operationalization on three other types of
deductive SLS specifications: an algorithmic specification of addition by Pfenning, small-step
structural operational semantics specifications, and the natural semantics of Davies’ staged com-
putation language λ#. The last two transformations explore the use of partial operationalization
in which we use the generality of operationalization to transform only some of the predicates in
a program.

6.6.1 Binary addition

In the notes for his Spring 2012 course on Linear Logic, Pfenning gave two algorithmic spec-
ifications of binary addition as logic programs; in both cases, binary numbers are represented
as lists of bits, either pεq = eps, pn0q = c pnq b0, or pn1q = c pnq b1. The first specification
was given as a forward-chaining ordered abstract machine [Pfe12d], and the second specification
was given as a backward chaining logic program [Pfe12b]. Because these operational speci-
fications were developed independently of operationalization, this provides an interesting and
relatively simple test-case for operationalization, defunctionalization, and their implementation
in the SLS prototype.
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inc: nat -> prop ord.
plus: nat -> nat -> prop ord.
retn: nat -> prop ord.
cont: frame -> prop ord.

inc/eps: inc eps >-> {retn (c eps b1)}.
inc/b0: inc (c N b0) >-> {retn (c N b1)}.
inc/b1: inc (c N b1) >-> {inc N * cont append0}.

plus/eN: plus eps N >-> {retn N}.
plus/Ne: plus N eps >-> {retn N}.

plus/b00: plus (c M b0) (c N b0) >-> {plus M N * cont append0}.
plus/b01: plus (c M b0) (c N b1) >-> {plus M N * cont append1}.
plus/b10: plus (c M b1) (c N b0) >-> {plus M N * cont append1}.
plus/b11: plus (c M b1) (c N b1) >-> {plus M N * cont carry}.
plus/carry: retn K * cont carry >-> {inc K * cont append0}.

cont/0: retn R * cont append0 >-> {retn (c R b0)}.
cont/1: retn R * cont append1 >-> {retn (c R b1)}.

Figure 6.22: Forward-chaining logic program for binary addition

The backward-chaining logic program for binary addition is presented in Figure 6.21; the
three-place relation plus depends on a two-place relation inc that handles carry bits. We opera-
tionalize this specification by giving plus and inc the evaluation predicates plus and inc, respec-
tively, and giving them the same return predicate, retn.

In the direct operationalization of Figure 6.21, we can observe that there are three separate
continuation frames (associated with the rules inc/b1, plus/b00, and plus/b11) that do the exact
same thing: cause the bit 0 to be appended to the end of the returned number. With this obser-
vation, we can consolidate these three frames and the rules associated with them into one frame
append0 and one rule cont/0 in Figure 6.22. Similarly, continuation frames associated with rules
plus/b01 and plus/b10 both append the bit 1, and can be consolidated into the frame append1 and
the rule cont/1 in Figure 6.22. (The only remaining frame is associated with the rule plus/b11
and invokes the increment procedure inc to handle the carry bit.) With the exception of the cre-
ation of redundant continuations, which could certainly be addressed by giving a more robust
implementation of defunctionalization, Figure 6.22 can be seen as a direct operationalization of
the deductive procedure in Figure 6.21.

Unfortunately, Figure 6.22 is not quite the same as Pfenning’s ordered abstract machine for
addition in [Pfe12d], but the difference is rather minor. In Pfenning’s version of addition, the
rule we call plus/carry in Figure 6.22 does not generate the conclusion cont append0. Instead,
that frame is generated earlier by the rule we called plus/b11, which in Pfenning’s formulation
is ∀M. ∀N. plus (cM b1) (cN b1)� {plusM N • cont carry • cont append0}.

Relating specifications that differ only in the order with which certain continuation frames
are generated seems to be a pervasive pattern. For example, Ian Zerny observed a very similar
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#mode value +.
value: exp -> prop.
value/lam: value (lam \x. E x).

#mode step + -.
step: exp -> exp -> prop.

step/app1: step (app E1 E2) (app E1’ E2)
<- step E1 E1’.

step/app2: step (app E1 E2) (app E1 E2’) <- value E1
<- step E2 E2’.

step/appred: step (app (lam \x. E x) V) (E V) <- value V.

#mode evsos + -.
evsos: exp -> exp -> prop.
evsos/steps: evsos E V <- step E E’ <- evsos E’ V.
evsos/value: evsos V V <- value V.

Figure 6.23: SOS evaluation

phenomenon when using operationalization to replay the correspondence between natural se-
mantics and abstract machines presented in [DMMZ12]. Characterizing this observation more
precisely is left for future work.

6.6.2 Operationalizing SOS specifications

We have thus far considered big-step operational semantics and abstract machines, mostly ne-
glecting another great tradition in operational semantics, structural operational semantics (SOS)
specifications [Plo04], though we did define the small-step judgment pe 7→ e′q = step peq pe′q
for call-by-value evaluation in the beginning of this chapter. That SOS specification is repeated
as an SLS specification in Figure 6.23. The figure also defines the judgment pe1 7→∗ vq =
evsos peq pvq that implements big-step evaluation in terms of the small-step SOS specification.

There are several ways that we can contemplate operationalizing the SOS specification in Fig-
ure 6.23. If we operationalize only the evsos predicate, making the evaluation predicate eval sos
and the return predicate retn sos, then we get what may be the most boring possible substructural
operational semantics specification, shown in Figure 6.24. The specification is fully tail-recursive
and there are no continuation frames, just an expression transitioning according to the rules of
the small-step evaluation relation for an indefinite number of steps as we extend the trace. While
the specification is almost trivial, it still captures something of the essence of an SSOS spec-
ification – atomic transitions are interpreted as steps (by way the inductively-defined relation
step peq pe′q) and nonterminating computations are interpreted as traces. This specification is
also the first case where we have performed operationalization on only part of a specification.
In the terminology of Section 6.1.1, Figure 6.24 implies that the rules value/lam, step/app1,
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eval_sos: exp -> prop ord.
retn_sos: exp -> prop ord.
evsos/steps: eval_sos E * !step E E’ >-> {eval_sos E’}.
evsos/value: eval_sos V * !value V >-> {retn_sos V}.

Figure 6.24: The operationalization of evsos from Figure 6.23

step/app2, and step/appred have been assigned to the category D of rules that remain in the
deductive fragment while the rules evsos/steps and evsos/value were assigned to the category C
of rules that end up being transformed.

In the other direction, we can consider operationalizing only the predicate step, which im-
plies that the rules value/lam, and evsos/steps and evsos/value to the category C and placing
step/app1, step/app2, and step/appred in the category C of rules that end up being transformed
into the concurrent fragment. The result of this transformation is shown in Figure 6.25. The first
subgoal of ev/steps, the proposition !(decompE � {plugE ′}), is the first time we have actually
encountered the effect of the D† operation discussed in Section 6.1.2.

Instead of eval, we have decomp in Figure 6.25, since the relevant action is to decompose
the expression looking for an applicable β-reduction, and instead of retn we have plug, since the
relevant action is to plug the reduced expression back into the larger term. When we operational-
ized natural semantics, the structure of the suspended cont f propositions was analogous to the
control stacks k of abstract machine specifications. In our operationalized SOS specification, the
structure of the cont f propositions is analogous to evaluation contexts, often written as E[].

E[] ::= E[] e | v E[] | []

The names decomp and plug are taken from the treatment of evaluation contexts in the functional
correspondence [Dan08].

As we foreshadowed in Section 6.4.3, the right computational interpretation of Figure 6.25
is not committed-choice forward chaining; the concurrent rules we generate can get stuck with-
out states being stuck, and factoring does not seem to provide a way out. Consider terms of
type eval p(λx.x) eq � {retn p(λx.x) e′q} where e 7→ e′ and consequently Θ{x:〈eval peq〉};∗
Θ{y:〈retn pe′q〉}. It is entirely possible to use rule step/app1 to derive the following:

(x1:〈eval p(λx.x) eq〉) ; (x2:〈eval pλx.xq〉, y2:〈cont (ap1 peq)〉) 6;

While stuck states in abstract machines raised alarm bells about language safety, the stuck state
above is not a concern – we merely should have applied rule step/app2 to x1 instead of rule
step/app1. This corresponds to the fact that small-step SOS specifications and specifications
that use evaluation contexts map most naturally to the backtracking search behavior generally
associated with backward chaining.

6.6.3 Partial evaluation in λ#

As a final example, we present two SLS specifications of Davies’ λ#, a logically-motivated type
system and natural semantics for partial evaluation [Dav96]. Partial evaluation is not a modular
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decomp: exp -> prop ord.
plug: exp -> prop ord.

#| Reduction rules |#
step/appred: decomp (app (lam \x. E x) V) * !value V

>-> {plug (E V)}.

#| Decomposing a term into an evaluation context |#
step/app1: decomp (app E1 E2)

>-> {decomp E1 * cont (ap1 E2)}.
step/app2: decomp (app V1 E2) * !value V1

>-> {decomp E2 * cont (ap2 V1)}.

#| Reconstituting a term from an evaluation context |#
step/app1/1: plug E1’ * cont (ap1 E2)

>-> {plug (app E1’ E2)}.
step/app2/1: plug E2’ * cont (ap2 E1)

>-> {plug (app E1 E2’)}.

#mode evsos + -.
evsos: exp -> exp -> prop.

evsos/steps: evsos E V
<- (decomp E >-> {plug E’})
<- evsos E’ V.

evsos/value: evsos V V <- value V.

Figure 6.25: This transformation of Figure 6.23 evokes an evaluation context semantics
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#mode fvar -.
fvar: exp -> prop.

#mode evn + + -.
evn: nat -> exp -> exp -> prop.

evn/var: evn N X X <- fvar X.
evn/lam: evn N (lam \x. E x) (lam \x. E’ x)

<- (All x. fvar x -> evn N (E x) (E’ x)).
evn/app: evn N (app E1 E2) (app E1’ E2’)

<- evn N E1 E1’
<- evn N E2 E2’.

Figure 6.26: Semantics of partial evaluation for λ# (lambda calculus fragment)

language extension, either on paper or in SLS. On paper, we have to generalize the judgment
e ⇓ v to have free variables; we write e ⇓Ψ v where Ψ contains free expression variables.

λx.e ⇓Ψ λx.e

e1 ⇓Ψ λx.e e2 ⇓Ψ v2 [v2/x]e ⇓Ψ v

e1 e2 ⇓Ψ v

In SLS, this does not actually require us to change the judgment ev e v from Figure 6.1, since
the specification itself does not specify the context of LF. However, λ# also requires a separate
judgment e ⇓nΨ e′ for partially evaluating expressions that will be fully evaluated not now but n
partial evaluation stages in the future. On the fragment of the logic that deals with functions and
applications, this judgment does nothing but induct over the structure of expressions:

x ∈ Ψ

x ⇓nΨ x

e ⇓nΨ,x e′

λx.e ⇓nΨ λx.e′
e1 ⇓nΨ e′1 e2 ⇓nΨ e′2
e1 e2 ⇓nΨ e′1 e

′
2

Note that the partial evaluation rule for λx.e extends the variable context Ψ. The SLS encoding
of the judgment e ⇓nΨ e′ is given in Figure 6.26, which also introduces an auxiliary fvar judgment
that tracks all the variables in Ψ.

The evaluation judgment e ⇓Ψ v and the partial evaluation judgment e ⇓nPsi e′ only interact
in λ# through the temporal fragment, which mediates between the two judgments by way of two
expressions. The first, next e, says that the enclosed expression e should be evaluated one time
step later than the surrounding expression. The second, prev e, says that the enclosed expression
should be evaluated one time step before the surrounding expression. There’s no way to evaluate
prev e ⇓Ψ v at time 0, so when we evaluate prev e at time 1 it is necessary that e evaluates to
next e′, as prev (next e′) at time step 1 will reduce to e′.

e ⇓1
Ψ e′

next e ⇓Ψ next e′
e ⇓n+1

Ψ e′

next e ⇓nΨ next e′
e ⇓Ψ next e′

prev e ⇓1
Ψ e′

e ⇓n+1
Ψ e′

prev e ⇓n+2
Ψ prev e′

This natural semantics specification is represented on the left-hand side of Figure 6.27. Due
to the structure of the evn/lam rule, we cannot operationalize the evn predicate: it does not have
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ev/next:
ev (next E) (next E’)
<- evn (s z) E E’.

evn/next:
evn N (next E) (next E’)
<- evn (s N) E E’.

ev/prev:
evn (s z) (prev E) E’
<- ev E (next E’).

evn/prev:
evn (s (s N)) (prev E) (prev E’)
<- evn (s N) E E’.

ev/next:
eval (next E) * !evn (s z) E E’
>-> {retn (next E’)}.

evn/next:
evn N (next E) (next E’)
<- evn (s N) E E’.

ev/prev:
evn (s z) (prev E) E’
<- (eval E >-> {retn (next E’)}).

evn/prev:
evn (s (s N)) (prev E) (prev E’)
<- evn (s N) E E’.

Figure 6.27: Semantics for λ# (temporal fragment)

the structure of a C proposition as described in Section 6.1.1. Rule evn/lam has the structure
of a D proposition if we assign evn to the class of predicates that are not operationalized, how-
ever. Therefore, it is possible to operationalize the ev predicate without operationalizing the evn
predicate. This leaves the rules in Figure 6.26 completely unchanged; the right-hand side of
Figure 6.27 contains the transformed temporal fragment, where evn/next and evn/prev rules are
similarly unchanged. The ev/next rule, however, contains a subgoal !evn (s z)E V which uses a
deductive derivation to build a concurrent step. Conversely, the ev/prev rule contains a subgoal of
evalE � {retn (nextV )} that uses a concurrent derivation to create a deductive derivation. This
makes the right-hand side of Figure 6.27 the only SLS specification in this thesis that exhibits an
arbitrarily nested dependency between concurrent and deductive reasoning.

The natural semantics of λ# are not, on a superficial level, significantly more complex than
other natural semantics. It turns out, though, that the usual set of techniques for adding state
to a operational semantics break down for λ#. Discussing a λ#-like logic with state remained
a challenge for many years, though a full solution has recently been given by Kameyama et
al. using delimited control operators [KKS11]. Our discussion of operationalization gives a
perspective on why this task is difficult, as the specification is far outside of the image of the
extended natural semantics we considered in Section 6.5.5. We normally add state to ordered
abstract machine specifications by manipulating and extending the set of ambient linear and
persistent resources. If we tried to add state to λ# the same way we added it in Section 6.5.1,
the entire store would effectively leave scope whenever computation considered the subterm e of
next e.

I conjecture that the nominal generalization of ordered linear lax logic alluded to in the dis-
cussion of locations and existential name generation (Section 6.5.1) could support operational-
izing predicates like evnn e e′. This might, in turn, make it possible to add state to an SSOS
specification of λ#, but that is left for future work.
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Chapter 7

Destination-passing

The natural notion of ordering provided by ordered linear logic is quite convenient for encoding
evolving systems that perform local manipulations to a stack-like structure. The push-down
automaton for generic bracket matching discussed in the introduction demonstrated this: we can
now present that specification in Figure 7.1 as an SLS specification.

hd: prop ord.
left: tok -> prop ord.
right: tok -> prop ord.
stack: tok -> prop ord.

push: hd * left X >-> {stack X * hd}.
pop: stack X * hd * right X >-> {hd}.

Figure 7.1: Ordered SLS specification of a PDA for parenthesis matching

Tree structures were reasonably straightforward to encode in the ordered context as well, as we
saw from the SSOS specification for parallel pairs in Chapter 6.

At some point, however, the simple data structures that can be naturally encoded in an ordered
context become too limiting. When we reach this point, we turn to destinations. Destinations
(terms of type dest) are a bit like the locations l introduced in the specification of mutable storage
in Section 6.5.1. They have no constructors: they are only introduced as variables by existential
quantification, which means they can freely be subject to unification when the conclusion of a
rule declares them to be equal (as described in Section 4.2). Destinations allow us to encode
very expressive structures in the linear context of SLS. Instead of using order to capture the local
relationships between different propositions, we use destinations.

Linear logic alone is able to express any (flat, concurrent) specifications that we could not ex-
press using ordered atomic propositions. We will demonstrate that fact in this chapter by describ-
ing a transformation, destination-adding, from specifications with ordered atomic propositions
to specifications that only include linear and persistent atomic propositions. This destination-
adding transformation, which we originally presented in [SP11a], turns all ordered atomic propo-
sitions into linear atomic propositions, and tags them with two new arguments (the destinations
of the destination-adding transformation). These extra destinations serve as a link between a
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formerly-ordered atomic proposition and its two former neighbors in the ordered context. When
we perform the destination-adding transformation on the specification in Figure 7.1, we get the
specification in Figure 7.2.

hd: dest -> dest -> prop lin.
left: tok -> dest -> dest -> prop lin.
right: tok -> dest -> dest -> prop lin.
stack: tok -> dest -> dest -> prop lin.

push: hd L M * left X M R >-> {Exists m. stack X L m * hd m R}.
pop: stack X L M1 * hd M1 M2 * right X M2 R >-> {hd L R}.

Figure 7.2: Linear SLS specification of a PDA for parenthesis matching

The specification in Figure 7.2, like every other specification that results from destination-
adding, has no occurrences of ↓A− and no ordered atomic propositions. As a result, we write
hd L M instead of $hd L M, omitting the optional linearity indicator $ on the linear atomic
propositions as discussed in Section 4.5. Additionally, by the discussion in Section 3.7, we would
be justified in viewing this specification as a linear logical specification (or a CLF specification)
instead of a ordered logical specification in SLS. This would not impact the structure of the
derivations significantly; essentially, it just means that we would write A+

1 ( {A+
2 } instead of

A+
1 � {A+

2 }. This reinterpretation was used in [SP11a], but we will stick with the notation of
ordered logic for consistency, while recognizing that there is nothing ordered about specifications
like the one in Figure 7.2.

When the destination-adding translation is applied to ordered abstract machine SSOS spec-
ifications, the result is a style of SSOS specification called destination-passing. Destination-
passing specifications were the original style of SSOS specification proposed in the CLF tech-
nical reports [CPWW02]. Whereas the operationalization transformation exposed the structure
of natural semantics proofs so that they could be modularly extended with stateful features, the
destination-adding translation exposes the control structure of specifications, allowing the lan-
guage to be modularly extended with control effects and effects like synchronization.

7.1 Logical transformation: destination-adding
The translation we define operates on rules the form ∀x.S1 � {S2}, where S1 must contain at
least one ordered atomic proposition. The syntactic category S is a refinement of the positive
types A+ defined by the following grammar:

S ::= p+
pers | p+

eph | p
+ | 1 | t .= s | S1 • S2 | ∃x:τ.S

The translation of a rule ∀x.S1 � {S2} is then ∀x.∀dL:dest. ∀dR:dest. JS1KdLdR � {JS2KdLdR},
where JSKdLdR is defined in Figure 7.3. It is also necessary to transform all ordered predicates with
kind Π.x1:τ1 . . .Π.xn :τn. prop ord that are declared in the signature into predicates with kind
Π.x1:τ1 . . .Π.xn:τn. dest → dest → prop ord in order for the translation of an ordered atomic
proposition p+ to remain well-formed in the transformed signature.
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Jp+KdLdR = a t1 . . . tn dL dR (where p+ = a t1 . . . tn)

Jp+
ephK

dL
dR

= p+
eph • dL

.
= dR

Jp+
persK

dL
dR

= p+
pers • dL

.
= dR

J1KdLdR = dL
.
= dR

Jt .= sKdLdR = t
.
= s • dL

.
= dR

JS1 • S2KdLdR = ∃dM :dest. JS1KdLdM • JS2KdMdR
J∃x:τ. SKdLdR := ∃x:τ. JSKdLdR

Figure 7.3: Destination-adding transformation

The destination-adding translation presented here is the same as the one presented in [SP11a],
except that that the transformation operated on rules of the form ∀x.S1 � {S2} and ours will
operate over rules of the form ∀x.S1 � {S2}.1 As discussed in Section 6.2.2, the difference
between � and � is irrelevant in this situation. The restriction to flat specifications, on the
other hand, is an actual limitation. We conjecture that the translation presented here, and the
correctness proof presented in [SP11a], would extend to nested SLS specifications. However, the
correctness proofs in that work are already quite tedious (though our explicit notation for patterns
as partial derivations might help simplify the proof somewhat) and the limited transformation
described by Figure 7.3 is sufficient for our purposes. Therefore, we will rely on the existing
result, leaving the correctness of a more general development for future work.

According to Figure 7.3, the rule pop in Figure 7.2 should actually be written as follows:

pop : ∀x:tok.∀l:dest.∀r:dest.

(∃m1:dest. stackx lm1 • (∃m2:dest. hdm1m2 • rightxm2 r))

� {hd l r}

The destination-adding transformation as implemented produces rules that are equivalent to the
specification in Figure 7.3 but that avoid unnecessary equalities and push existential quantifiers as
far out as possible (which includes turning existential quantifiers (∃x.A+)� B− into universal
quantifiers ∀x.A+ � B−). The result is a specification, equivalent at the level of synthetic
transitions, that looks like the one in Figure 7.2. We write the result of the destination-adding
transformation on the signature Σ as Dest(Σ).

We can consider a further simplification: is it necessary to generate a new destination m by
existential quantification in the head ∃m. stackx lm • hdmr of push in Figure 7.2? There is
already a destination m mentioned in the head that will be unused in the conclusion. It would,
in fact, be possible to avoid generating new destinations in the transformation of rules ∀x. S1 �
{S2} where the head S2 contains no more ordered atomic propositions than the premise S1.

1The monad {S2} did not actually appear in [SP11a], and the presentation took polarity into account but was
not explicitly polarized. We are justified in reading the lax modality back in by the erasure arguments discussed in
Section 3.7.
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We don’t perform this simplification for a number of reasons. First and foremost, the trans-
formation described in Figure 7.3 more closely follows the previous work by Morrill, Moot,
Piazza, and van Benthem discussed in Section 5.2, and transformation as given simplifies the
correctness proof (Theorem 7.1). Pragmatically, the additional existential quantifiers also give
us more structure to work with when considering program abstraction in Chapter 8. Finally, if
we apply both the transformation in Figure 7.3 and a transformation that reuses destinations to
an ordered abstract machine SSOS specification, the former transformation produces results that
are more in line with existing destination-passing SSOS specifications.

To prove the correctness of destination-adding, we must describe a translation JΨ; ∆K from
process states with ordered, linear, and persistent atomic propositions to ones with only linear
and persistent atomic propositions:

JΨ; ·K = (Ψ, dL:dest; ·)
JΨ; ∆, x:〈a t1 . . . tn〉 ordK = (Ψ′, dL:dest, dR:dest; ∆′, x:〈a t1 . . . tn dL dR〉)

(where a is ordered and JΨ; ∆K = (Ψ′, dL:dest; ∆′))

JΨ; ∆, x:S ordK = (Ψ′, dL:dest, dR:dest; ∆′, x:JSKdLdR ord)

(where a is ordered and JΨ; ∆K = (Ψ′, dL:dest; ∆′))
JΨ; ∆, x:〈p+

eph〉 ephK = (Ψ′; ∆′, x:〈p+
eph〉)

(where JΨ; ∆K = (Ψ′; ∆′))
JΨ; ∆, x:〈p+

pers〉 persK = (Ψ′; ∆′, x:〈p+
pers〉)

(where JΨ; ∆K = (Ψ′; ∆′))

Theorem 7.1 (Correctness of destination-adding).
JΨ; ∆K ;Dest(Σ) (Ψl; ∆l) if and only if (Ψ; ∆) ;Σ (Ψo; ∆o) and (Ψl; ∆l) = JΨo,Ψ

′′; ∆oK
for some variable context Ψ′′ containing destinations free in the translation of ∆ but not in the
translation of ∆o.

Proof. This proof is given in detail in [SP11a, Appendix A]. It involves a great deal of tedious
tracking of destinations, but the intuition behind that tedious development is reasonably straight-
forward.

First, we need to prove that a right-focused proof of Ψ; ∆ `Σ S implies that there is an analo-
gous proof of JΨ; ∆K `Dest(Σ) [JSKdLdR ], and conversely that if we can prove Ψ; ∆ `Dest(Σ) [JSKdLdR ]
in right focus under then linear translation, then it is possible to reconstruct an ordered context
Ψ′; ∆′ such that JΨ′; ∆′K = Ψ; ∆ and Ψ′; ∆′ `Σ [S] by threading together the destinations from
dL to dR in ∆. Both directions are by structural induction on the given derivation. The critical
property is that it is possible to reconstruct the ordered context from the context of any right-
focus sequent that arises during translation. Proving that property is where the flat structure of
rules is particularly helpful; the use of positive atomic propositions comes in handy too [SP11a,
Lemma 1].

Second, we need to prove that patterns can be translated in both directions: that if (Ψ; ∆) =⇒
(Ψ′; ∆o) under the original signature then P :: JΨ; ∆K =⇒ JΨ′; ∆oK under the translated signa-
ture [SP11a, Lemma 4], and that if P :: JΨ; ∆K =⇒ (Ψ′; ∆l) then there exists ∆o such that
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eval: exp -> dest -> dest -> prop lin.
retn: exp -> dest -> dest -> prop lin.
cont: frame -> dest -> dest -> prop lin.

ev/lam: eval (lam \x. E x) D’ D >-> {retn (lam \x. E x) D’ D}.

ev/app: eval (app E1 E2) D’ D
>-> {Exists d1. eval E1 D’ d1 * cont (app1 E2) d1 D}.

ev/app1: retn (lam \x. E x) D’ D1 * cont (app1 E2) D1 D
>-> {Exists d2. eval E2 D’ d2 * cont (app2 \x. E x) d2 D}.

ev/app2: retn V2 D’ D2 * cont (app2 \x. E x) D2 D
>-> {eval (E V2) D’ D}.

Figure 7.4: Translation of Figure 6.6 with vestigial destinations

(Ψ′; ∆o) = JΨ′; ∆′′K [SP11a, Lemma 5]. Both directions are again by induction over the struc-
ture of the given pattern.

The theorem then follows directly from these two lemmas. There is a trivial induction on
spines to handle the sequence of quantifiers, but the core of a flat rule is a proposition S1 � {S2}
– we reconstruct the ordered context from the value used to prove S1, and then begin inverting
with the positive proposition S2 in the context.

If we leave off explicitly mentioning the variable context Ψ, then the trace that represents
successfully processing the string [ ( ) ] with the transformed push-down automaton specification
in Figure 7.2 is as follows (we again underline hd for emphasis):

y0:〈hd d0 d1〉, x1:〈left sq d1 d2〉, x2:〈left pa d2 d3〉, x3:〈right pa d3 d4〉, x4:〈right sq d4 d5〉
; z1:〈stack sq d0 d6〉, y1:〈hd d6 d2〉, x2:〈left pa d2 d3〉, x3:〈right pa d3 d4〉, x4:〈right sq d4 d5〉
; z1:〈stack sq d0 d6〉, z2:〈stack pa d6 d7〉, y2:〈hd d7 d3〉, x3:〈right pa d3 d4〉, x4:〈right sq d4 d5〉
; z1:〈stack sq d0 d6〉, y3:〈hd d6 d4〉, x4:〈right sq d4 d5〉
; y4:〈hd d0 d5〉

One reason for leaving off the variable context Ψ in this example is that by the end it contains the
LF variables d1, d2, d3, d4, d5, d6, and d7, none of which are actually present in the substructural
context y4:〈hd d0 d5〉. We can informally think of these destinations as having been “garbage
collected,” but this notion is not supported by the formal system we described in Chapter 4.

7.1.1 Vestigial destinations
When we apply the translation of expressions to the call-by-value lambda calculus specification
from Figure 6.6, we get the specification in Figure 7.4. Because eval and retn are always unique
and always appear at the leftmost end of this substructural context, this specification has a quirk:
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eval: exp -> dest -> prop lin.
retn: exp -> dest -> prop lin.
cont: frame -> dest -> dest -> prop lin.

ev/lam: eval (lam \x. E x) D >-> {retn (lam \x. E x) D}.

ev/app: eval (app E1 E2) D
>-> {Exists d1. eval E1 d1 * cont (app1 E2) d1 D}.

ev/app1: retn (lam \x. E x) D1 * cont (app1 E2) D1 D
>-> {Exists d2. eval E2 d2 * cont (app2 \x. E x) d2 D}.

ev/app2: retn V2 D2 * cont (app2 \x. E x) D2 D
>-> {eval (E V2) D}.

Figure 7.5: Translation of Figure 6.6 without vestigial destinations

the second argument to eval and retn is always d′, and the destination never changes; it is es-
sentially a vestige of the destination-adding transformation. As long as we are transforming a
sequential ordered abstract machine, we can eliminate this vestigial destination, giving us the
specification in Figure 7.5. This extra destination is not vestigial when we translate a parallel
specification, but as we discuss in Section 7.2.1, we don’t necessarily want to apply destination-
adding to parallel ordered abstract machines anyway.

7.1.2 Persistent destination passing
When we translate our PDA specification, it is actually not necessary to translate hd, left, right
and stack as linear atomic propositions. If we translate hd as a linear predicate but translate the
other predicates as persistent predicates, it will still be the case that there is always exactly one
linear atomic proposition hd dL dR in the context, at most one stackx d dL proposition with the
same destination dL, and at most one rightx dR d or leftx dR d with the same destination dR.
This means it is still the case that the PDA accepts the string if and only if there is the following
series of transitions:

(x:〈hd d0 d1〉, y1:〈leftx1 d1 d2〉, . . ., yn:〈rightxn dn dn+1〉) ;∗ (Γ, z:〈hd d0 dn+1〉)

Unlike the entirely-linear PDA specification, the final state may include some additional per-
sistent propositions, represented by Γ. Specifically, the final state contains all the original
leftx di di+1 and rightx di di+1 propositions along with all the stackx d d′ propositions that were
created during the course of evaluation.

I originally conjectured that a version of Theorem 7.1 would hold in any specification that
turned some ordered atomic propositions linear and others persistent just as long as at least one
atomic proposition in the premise of every rule remained linear after transformation. This would
have given a generic justification for turning left, right and stack persistent in Figure 7.2 and
to turning cont persistent in Figure 7.5. However, that condition is not strong enough. To see
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why, consider a signature with one rule, a • b • a � {b}, where a and b are ordered atomic
propositions. We can construct the following trace:

(x1:〈a〉, x2:〈b〉, x3:〈a〉, x4:〈b〉, x5:〈a〉) ; (x:〈b〉, x4:〈b〉, x5:〈a〉) 6;

From the same starting point, exactly one other trace is possible:

(x1:〈a〉, x2:〈b〉, x3:〈a〉, x4:〈b〉, x5:〈a〉) ; (x1:〈a〉, x2:〈b〉, x:〈b〉) 6;

However, if we perform the destination-passing transformation, letting a d d′ be a persistent
atomic proposition and letting b d d′ be a linear atomic proposition, then we have a series of
transitions in the transformed specification that can reuse the atomic proposition a d2 d3 in a way
that doesn’t correspond to any series of transitions in ordered logic:

x1:〈a d0 d1〉, x2:〈b d1 d2〉, x3:〈a d2 d3〉, x4:〈b d3 d4〉, x5:〈a d4 d5〉
; x1:〈a d0 d1〉, x:〈b d0 d3〉, x3:〈a d2 d3〉, x4:〈b d3 d4〉, x5:〈a d4 d5〉
; x1:〈a d0 d1〉, x:〈b d0 d3〉, x3:〈a d2 d3〉, x′:〈b d2 d5〉, x5:〈a d4 d5〉

In the first process state, there is a path d0, d1, d2, d3, d4, d5 through the context that reconstructs
the ordering in the original ordered context. In the second process state, there is still a path
d0, d3, d4, d5 that allows us to reconstruct the ordered context (x:〈b〉, x4:〈b〉, x5:〈a〉) by ignoring
the persistent propositions associated with x1 and x3. However, in the third process state above,
no path exists, so the final state cannot be reconstructed as any ordered context.

It would be good to identify a condition that allowed us to selectively turn some ordered
propositions persistent when destination-adding without violating (a version of) Theorem 7.1.
In the absence of such a generic condition, it is still straightforward to see that performing
destination-passing and then turning some propositions persistent is an abstraction: if the origi-
nal system can make a series of transitions, the transformed system can simulate those transitions,
but the reverse may not be true. In any case, we can observe that, for many of systems we are
interested in, the partially-persistent destination-passing specification can only make transitions
that were possible in the ordered specification. The push-down automata with persistent stack,
left, and right is one example of this, and we can similarly make the cont predicate persistent in
SSOS specifications without introducing any new transitions. Turing the cont predicate persis-
tent will in fact be necessary for the discussion of first-class continuations in Section 7.2.4.

7.2 Exploring the richer fragment
In [SP11a], we were interested in exact logical correspondence between ordered abstract machine
SSOS specifications and destination-passing SSOS specifications. (Destination-adding was use-
ful in that context because it exposes information about the control structure of computations;
this control structure can be harnessed by the program abstraction methodology described in
Chapter 8 to derive program analyses.) In keeping with our broader use of the logical correspon-
dence, this section will cover programming language features that are not easily expressible with
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cont2: frame -> dest -> dest -> dest -> prop lin.

ev/pair: eval (pair E1 E2) D
>-> {Exists d1. Exists d2.

eval E1 d1 * eval E2 d2 * cont2 pair1 d1 d2 D}.

ev/pair1: retn V1 D1 * retn V2 D2 * cont2 pair1 D1 D2 D
>-> {retn (pair V1 V2) D}.

Figure 7.6: Destination-passing semantics for parallel evaluation of pairs

ordered abstract machine SSOS specifications but that can be easily expressed with destination-
passing SSOS specifications. Consequently, these are features that can be modularly added to
(sequential) ordered abstract machine specifications that have undergone the destination-adding
transformation.

The semantics of parallelism and failure presented in Section 7.2.1 are new. The semantics of
futures (Section 7.2.3) and synchronization (Section 7.2.2) are a based on the specifications first
presented in the CLF tech report [CPWW02]. The semantics of first-class continuations (Sec-
tion 7.2.4) were presented previously in [Pfe04, PS09]. In destination-passing semantics, when
we are dealing with fine-grained issues of control flow, the interaction of programming language
features becomes more delicate. Parallel evaluation, recoverable failure, and synchronization are
compatible features, as are synchronization and futures. Failure and first-class continuations are
also compatible. We will not handle other interactions, though it would be interesting to explore
the adaptation of Moreau and Ribbens’ abstract machine for Scheme with parallel evaluation and
callcc as a substructural operational semantics [MR96].

7.2.1 Alternative semantics for parallelism and failure

In Section 6.5.4, we discussed how parallel evaluation and recoverable failure can be combined
in an ordered abstract machine SSOS specification. Due to the fact that the two parts of a parallel
ordered abstract machine are separated by an arbitrary amount of ordered context, some poten-
tially desirable ways of integrating parallelism and failure were difficult or impossible to express,
however.

Once we transition to destination-passing SSOS specifications, it is possible to give a more
direct semantics to parallel evaluation that better facilitates talking about failure. Instead of hav-
ing the stack frame associated with parallel pairs be cont pair1 (as in Figure 6.8) or cont2 pair1 (as
discussed in Section 6.5.4), we create a continuation cont2 pair1 d1 d2 d with three destinations;
d1 and d2 represent the return destinations for the two subcomputations, whereas d represents
the destination to which the evaluated pair is to be returned. This strategy applied to the parallel
evaluation of pairs is shown in Figure 7.6.

In ordered specifications, an ordered atomic proposition can be directly connected to at most
two other ordered propositions: the proposition immediately to the left in the ordered context, and
the proposition immediately to the right in the ordered context. What Figure 7.6 demonstrates
is that, with destinations, a linear proposition can be locally connected to any finite number of
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error: dest -> prop lin.
handle: exp -> dest -> dest -> prop lin.
terminate: dest -> prop lin.

ev/fail: eval fail D >-> {error D}.
ev/error: error D’ * cont F D’ D >-> {error D}.
ev/errorL: error D1 * cont2 F D1 D2 D >-> {error D * terminate D2}.
ev/errorR: error D2 * cont2 F D1 D2 D >-> {error D * terminate D1}.

term/retn: retn V D * terminate D >-> {one}. ; Returning in vain
term/err: error D * terminate D >-> {one}. ; Failing redundantly

ev/catch: eval (catch E1 E2) D
>-> {Exists d’. eval E1 d’ * handle E2 d’ D}.

ev/catcha: retn V D’ * handle _ D’ D >-> {retn V D}.
ev/catchb: error D’ * handle E2 D’ D >-> {eval E2 D}.

Figure 7.7: Integration of parallelism and exceptions; signals failure as soon as possible

other propositions. Whereas in ordered abstract machine specifications the parallel structure of
a computation had to be reconstructed by parsing the context in postfix, a destination-passing
specification uses destinations to thread together the treelike dependencies in the context. It
would presumably be possible to consider a different version of the parallel operationalization
that targeted this desirable form of parallel destination-passing specification specifically, but we
will not present such a transformation in this thesis.

Using destination-based parallel continuations, we give, in Figure 7.7, a semantics for recov-
erable failure that eagerly returns errors from either branch of a parallel computation. The rules
ev/errorL and ev/errorR immediately pass on errors returned to a frame where the computation
forked. Those two rules also leave behind a linear proposition terminate d that will abort the other
branch of computation if it returns successfully (rule term/retn) or with an error (rule term/err).
It would also be possible to add rules like ∀d.∀d′. cont d′ d • terminate d� {terminate d′} that
actively aborted the useless branch instead of passively waiting for it to finish.

7.2.2 Synchronization
The CLF tech report gives a destination-passing presentation of nearly the full set of Concur-
rent ML primitives, omitting only negative acknowledgements [CPWW02]. We will present an
SLS version of that Concurrent ML specification as a part of the hybrid specification in Ap-
pendix B. In Figure 7.8, rather than reprising that specification, we present an extremely simple
form of synchronous communication.

New channels are created by evaluating pchan c.eq = chanλc. peq, which introduces a new
channel (an LF term of the type channel that has no constructors) and substitutes it for the bound
variable c in e. Synchronization happens when there is both a send send c e being evaluated in
one part of the process state and a receive recv c with the same channel being evaluated in a
different part of the process state. The expression e will first evaluate to a value v (rule ev/send).
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ev/chan: eval (chan \c. E c) D >-> {Exists c. eval (E c) D}.

ev/send: eval (send C E) Dsend
>-> {Exists d’. eval E d’ * cont (send1 C) d’ Dsend}.

ev/send1: retn V D’ * cont (send1 C) D’ Dsend * eval (recv C) Drecv
>-> {retn unit Dsend * retn V Drecv}.

Figure 7.8: Semantics of simple synchronization

Communication is driven by rule ev/send1, which allows computation to continue in both the
sender and the receiver.

Synchronous communication introduces the possibility of deadlocks. Without synchronous
communication, the presence of a suspended atomic proposition eval e d always indicates the
possibility of some transition, and the combination of a proposition retn v d and a continuation
cont f d d′ can either immediately transition or else are permanently in a stuck state. In [PS09],
this observation motivated a classification of atomic propositions as active propositions like
eval e d that independently drive computation, passive propositions like cont f d′ d that do not
drive computation, and latent propositions like retn f d that may or may not drive computation
based on the ambient environment of passive propositions. The specification in Figure 7.8 does
not respect this classification because a proposition of the form eval (recv c) d cannot imme-
diately transition. We could restore this classification by having a rule ∀c. ∀d. eval (recv c) d �
{await c d} for some new passive linear predicate await and then replacing the premise eval (recvC)D
in ev/send1 with awaitC D.

Labeled transitions

Substructural operational semantics specifications retain much of the flavor of abstract machines,
in that we are usually manipulating expressions along with their continuations. In ordered spec-
ifications, continuations are connected to evaluating expressions and returning values only by
their relative positions in the ordered context; in destination-passing specifications, expressions
and values are connected to continuations by the threading of destinations.

Abstract machines are not always the most natural way to express a semantics. This observa-
tion is part of what motivated our discussion of the operationalization transformation from natural
semantics (motto: “natural” is our first name!) and our informal discussion of statefully-modular
natural semantics in Section 6.5.5. In Chapter 6, we showed that the continuation-focused per-
spective of SSOS allowed us to expose computation to the ambient state. With the example of
synchronization above, we see that destination-passing SSOS specifications also expose compu-
tations in the process state to other computations, which is what allows the synchronization in
rule ev/send1 to take place.

In small-step operational semantics, labeled deduction is used to describe specifications like
the one above. At a high level, in a labeled transition system we inductively define a small step
judgment e lab7−→ e′ with the property that

∗ e c!v7−→ e′ if e steps to e′ by reducing some subterm send c v, to 〈〉,
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bind: exp -> exp -> prop pers. ; Future is complete
promise: dest -> exp -> prop lin. ; Future is waiting on a value

ev/bind: eval X D * !bind X V >-> {retn V D}.
#| WAITING: eval X D * promise Dfuture X >-> ??? |#
ev/promise: retn V D * promise D X >-> {!bind X V}.

ev/flam: eval (flam \x. E x) D >-> {retn (flam \x. E x) D}.

ev/fapp1: retn (flam \x. E x) D1 * cont (app1 E2) D1 D
>-> {Exists x. eval (E x) D *

Exists dfuture. eval E2 dfuture *
promise dfuture x}.

Figure 7.9: Semantics of call-by-future functions

∗ e c?v7−→ e′ if e steps to e′ by reducing some subterm recv c to v, and

∗ e1 in parallel with e2 (and possibly also in parallel with some other e3, e4, etc.) can step
to e′1 in parallel with e′2 (and in parallel with an unchanged e3, e4, etc.) if e1

c!v7−→ e′1 and
e2

c?v7−→ e′2.

Labels essentially serve to pass messages up through the inductive structure of a proposition.
In destination-passing SSOS semantics, on the other hand, the internal structure of e is spread
out as an series of frames throughout the context, and so the innermost redexes of terms can be
directly connected. It would be interesting (but probably quite nontrivial) to consider a translation
from labeled deduction systems to destination-passing SSOS specifications along the lines of the
operationalization transformation.

7.2.3 Futures

Futures can be seen as a parallel version of call-by-value, and the presentation in Figure 7.9
can be compared to the environment semantics for call-by-value in Figure 6.19. We introduce
future-functions as a new kind of function flamλx.e comparable to plain-vanilla call-by-value
functions lamλx.e, lazy call-by-need functions lazylamλx.e, and environment-semantics func-
tions envlamλx.e. As in the environment semantics specification, when a call-by-future function
returns to a frame p2 e2q = app1 pe2q, we create a new expression x by existential quantifica-
tion. However, instead of suspending the function body on the stack as we did in Figure 6.19,
in Figure 7.9 we create a new destination dfuture and start evaluating the function argument
towards that destination (rule ev/fapp1). We also create a linear proposition – promise dfuture x
– that will take any value returned to dfuture and permanently bind it to x (rule ev/promise). As
a proposition that only exists during the course of evaluating the argument, promise is analogous
to the black hole in our specification of lazy call-by-need.

Futures use destinations to create new and potentially disconnected threads of computation,
which can be seen in the example evaluation of (λx.sx) (s z) – where λx.e is interpreted as a
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x1:〈eval p(λx.sx) (s z)q d1〉

x2:〈eval pλx.sxq d2〉, x3:〈cont p2 (s z)q d2 d1〉

x3:〈retn pλx.sxq d2〉, x3:〈cont p2 (s z)q d2 d1〉

x4:〈eval (succx) d1〉,

x4:〈eval (succx) d1〉,

x4:〈evalx d5〉, x9:〈cont succ1 d5 d1〉,

x4:〈evalx d5〉, x9:〈cont succ1 d5 d1〉,

x4:〈evalx d5〉, x9:〈cont succ1 d5 d1〉,

x4:〈evalx d5〉, x9:〈cont succ1 d5 d1〉,

x13:〈retn ps zq d5〉, x9:〈cont succ1 d5 d1〉, x12:〈bindx ps zq〉 pers

x14:〈retn ps (s z)q d1〉, x12:〈bindx ps zq〉 pers

x5:〈eval ps zq d3〉, x6:〈promise d3 x〉

x7:〈eval pzq d4〉, x8:〈cont succ1 d4 d3〉, x6:〈promise d3 x〉

x7:〈eval pzq d4〉, x8:〈cont succ1 d4 d3〉, x6:〈promise d3 x〉

x10:〈retn pzq d4〉, x8:〈cont succ1 d4 d3〉, x6:〈promise d3 x〉

x11:〈retn ps zq d3〉, x6:〈promise d3 x〉

x12:〈bindx ps zq〉 pers

In this phase,
the two computations

proceed in parallel

In this phase,
the primary computation is stuck

while it waits on the promiseRemember: bind is persistent, all other propositions are linear

Figure 7.10: Series of process states in an example call-by-future evaluation

future function flam instead of lam as before – given in Figure 7.10. That figure illustrates how
spawning a future splits the destination structure of the ordered context into two disconnected
threads of computation. This was not possible in the ordered framework where every compu-
tation had to be somewhere specific in the ordered context relative to the current computation
– either to the left, or to the right. These threads are connected not by destinations but by the
variable x, which the primary computation needs the future to return before it can proceed.

Note the similarity between the commented-out rule fragment in Figure 7.9 and the com-
mented out rule fragments in the specifications of call-by-need evaluation (Section 6.5.2). In the
call-by-need specifications, needing an unavailable value was immediately fatal. With specifica-
tions, needing an unavailable value is not immediately fatal: the main thread of computation is
stuck, but only until the future’s promise is fulfilled.

The destination-passing semantics of futures interact seamlessly with the semantics of syn-
chronization and parallelism, but not with the semantics of recoverable failure: we would have
to make some choice about what to do when a future signals failure.

7.2.4 First-class continuations

First-class continuations are a sophisticated control feature. Continuations are another name for
the stacks k in abstract machine semantics with states k � e and k � v (and also, potentially,
kJ if we want to be able to return errors, as discussed in Section 6.5.4). First-class continua-
tions introduce a new value, contn k, to the language. Programmers cannot write continuations
k directly, just as they cannot write locations l directly; rather, the expression pletccx.eq =
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ev/letcc: eval (letcc \x. E x) D >-> {eval (E (contn D)) D}.
ev/throw2: retn (contn DK) D2 * !cont (throw2 V1) D2 D

>-> {retn V1 DK}.

Figure 7.11: Semantics of first-class continuations (with letcc)

letccλx.peq captures the current expression as a continuation:

k � letccx.e 7→ k � [contn k/x]e

There is a third construct, pthrow e1 to e2q = throw pe1q pe2q that evaluates e1 to a value v1,
evaluates e2 to a continuation value cont k′, and then throws away the current continuation in
favor of returning v1 to k′:

k � throw e1 to e2 7→ (k; throw2 to e2)� e1

(k; throw2 to e2)� v1 7→ (k; throw v1 to2)� e2

(k; throw v1 to2)� contn k′ 7→ k′ � v1

When handled in a typed setting, a programming language with first-class continuations can be
seen as a Curry-Howard interpretation of classical logic.

In destination-passing SSOS specifications, we never represent continuations or control stacks
k directly. However, we showed in Section 6.3 that a control stack k is encoded in the context
as a series of cont frames. In a destination-passing specification, it is therefore reasonable to
associate a k continuation with the destination d that points to the topmost frame cont f d d′ in
the stack k encoded in the process state. Destinations stand for continuations in much the same
way that introduced variables x in the environment semantics stand for the values v they are
bound to through persistent bindx v propositions. In Figure 7.11, the rule ev/letcc captures the
current continuation d as an expression cont d that is substituted into the subexpression. In rule
ev/throw2, the destination dk held by the value contn dk gets the value v1 returned to it; the
previous continuation, represented by the destination d, is abandoned.

Just as it is critical for the bind predicate in the environment semantics to be persistent, it is
necessary, when dealing with first-class-continuations, to have the cont predicate be persistent.
As discussed in Section 7.1.2, it does not change the behavior of any SSOS specifications we
have discussed if linear cont predicates are turned into persistent cont predicates.

Turning cont into a persistent predicate does not greatly influence the transitions that are
possible, so in a sense we have not changed our SSOS semantics very much in order to add first-
class continuations. However, the implicit representation of stacks in the context does complicate
adequacy arguments for the semantics in Figure 7.11 relative to the transition rules given above.
We will return to this point in Section 9.6 when we discuss generative invariants that apply to
specifications using first-class continuations.
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Chapter 8

Linear logical approximation

A general recipe for constructing a sound program analysis is to (1) specify the operational se-
mantics of the underlying programming language via an interpreter, and (2) specify a terminat-
ing approximation of the interpreter itself. This is the basic idea behind abstract interpretation
[CC77], which provides techniques for constructing approximations (for example, by exhibiting
a Galois connection between concrete and abstract domains). The correctness proof must estab-
lish the appropriate relationship between the concrete and abstract computations and show that
the abstract computation terminates. We need to vary both the specification of the operational se-
mantics and the form of the approximation in order to obtain various kinds of program analyses,
sometimes with considerable ingenuity.

In this chapter, which is mostly derived from [SP11a], we consider a new class of instances in
the general schema of abstract interpretation that is based on the approximation of SSOS spec-
ifications in SLS. We apply logically justified techniques for manipulating and approximating
SSOS specifications to yield approximations that are correct by construction. The resulting per-
sistent logical specifications can be interpreted and executed as saturating logic programs, which
means that derived specifications are executable program analyses.

The process described in this chapter does not claim to capture or derive all possible interest-
ing program analyses. For instance, the methodology we describe only derives over-approximations
(or may- analyses) that ensure all possible behaviors will be reported by the analysis. There is a
whole separate class of under-approximations (or must- analyses) which ensure that if a behavior
is reported by the analysis it is possible; these are more closely associated with bug-finding and
we will not consider them here [GNRT10]. Instead, we argue for the utility of our methodology
by deriving two fundamental and rather different over-approximation-based analyses: a context-
insensitive control flow analysis (Section 8.4) and an alias analysis (Section 8.5). Might and Van
Horn’s closely related “abstracting abstract machines” methodology, described in Section 8.6
along with other related work, suggests many more examples.

8.1 Saturating logic programming

Concurrent SLS specifications where all positive atomic propositions are persistent (and where
all inclusions of negative propositions in positive propositions – if there are any – have the form
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!A−, not ↓A− or ¡A−) have a distinct logical and operational character. Logically, by the discus-
sion in Section 3.7 we are justified in reading such specifications as specifications in persistent
intuitionistic logic or persistent lax logic. Operationally, while persistent specifications have an
interpretation as transition systems, that interpretation is not very useful. This is because if we
can take a transition once – for instance, using the rule a � {b} to derive the persistent atomic
proposition b from the persistent atomic proposition a – none of the facts that enabled that tran-
sition can be consumed, as all facts are persistent. Therefore, we can continue to make the same
transition indefinitely; in the above-mentioned example, such transitions will derive multiple
redundant copies of b.

The way we will understand the meaning of persistent and concurrent SLS specifications
is in terms of saturation. A process state (Ψ; ∆) is saturated relative to the signature Σ if, for
any step (Ψ; ∆) ;Σ (Ψ′; ∆′), it is the case that Ψ and Ψ′ are the same (the step unified no
distinct variables and introduced no new variables), x:〈p+

pers〉 ∈ ∆′ implies x:〈p+
pers〉 ∈ ∆, and

x:A− pers ∈ ∆′ implies x:A− pers ∈ ∆. This means that a signature with a rule that produces
new variables by existential quantification, like a � {∃x.b(x)} has no saturated process states
where a is present. We will cope with rules of this form by turning them into rules of the form
a � {∃x.b(x) • x .

= t} for some t, neutralizing the free existential variable as a notational
definition. Notions of saturation that can cope with free existentially generated variables in other
ways are interesting, but are beyond the scope of this dissertation.

A minimal saturated process state is one with no duplicated propositions; we can compute
a minimal process state from any saturated process state by removing duplicates. For purely
persistent specifications and process states, minimal saturated process states are unique when
they exist: if (Ψ; ∆) ;∗Σ (Ψ1; ∆1) and (Ψ; ∆) ;∗Σ (Ψ2; ∆2) and both (Ψ1; ∆1) and (Ψ2; ∆2) are
saturated, then (Ψ1; ∆1) and (Ψ2; ∆2) have minimal process states that differ only in the names
of variables.

Furthermore, if a saturated process state exists for a given initial process state, the minimal
saturated process state can be computed by the usual forward-chaining semantics where only
transitions that derive new persistent atomic propositions or equalities t .

= s are allowed. This
forward-chaining logic programming interpretation of persistent logic is extremely common,
usually associated with the logic programming language Datalog. A generalization of Datalog
formed the basis of McAllester and Ganzinger’s meta-complexity results: they gave a cost se-
mantics to their logic programming language, and then they used that cost semantics to argue that
many program analyses could be efficiently implemented as logic programs [McA02, GM02].
Persistent SLS specifications can be seen as an extension of McAllester and Ganzinger’s lan-
guage (and, transitively, as a generalization of Datalog). We will not deal with cost semantics or
efficiency, however, as our use of higher-order abstract syntax appears to complicate McAllester
and Ganzinger’s cost semantics.

Just as the term persistent logic was introduced in Chapter 2 to distinguish what is tradi-
tionally referred to as intuitionistic logic from intuitionistic ordered and linear logic, we will
use the term saturating logic programming to distinguish what is traditionally referred to as
forward-chaining logic programming from the forward-chaining logic programming interpreta-
tion that makes sense for ordered and linear logical specifications. There is a useful variant of
substructural forward chaining, forward chaining with quiescence [LPPW05], that acts like sat-
urating logic programming on purely-persistent specifications and like simple committed-choice
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hd: dest -> dest -> prop pers.
left: tok -> dest -> dest -> prop pers.
right: tok -> dest -> dest -> prop pers.
stack: tok -> dest -> dest -> prop pers.

push: hd L M * left X M R
>-> {Exists m. stack X L m * hd m R * m == fm X L M R}.

pop: stack X L M1 * hd M1 M2 * right X M2 R >-> {hd L R}.

Figure 8.1: Skolemized approximate version of the PDA specification from Figure 7.2

forward chaining on specifications with no persistent propositions. We refined this interpretation
and gave it a cost semantics in [SP08], but this more sophisticated interpretation is not relevant
to the examples in this dissertation.

8.2 Using approximation

The meta-approximation theorem that we present in the next section gives us a way of building
abstractions from specifications and initial process states: we interpret the approximate version
of the program as a saturating logic program over that initial state. If we can obtain a saturated
process state using the logic programming interpretation, it is an abstraction of the initial process
state. It is not always possible to obtain a saturated process state using the logic programming
interpretation, however: rules like ∀x. a(x) � {a(s(x))} and ∀x. a(x) � {∃y.a(y)} lead to
non-termination when interpreted as saturating logic programs. Important classes of programs
are known to terminate in all cases, such as those in the Datalog fragment where the only terms
in the program are variables and constants. Structured terms (like expressions encoded in the LF
type exp) fall outside the Datalog fragment.

Consider the destination-passing PDA specification from Figure 7.2. If we simply turn all
linear predicates persistent, the first step in the approximation methodology, then the push rule
will lead to non-termination because the head ∃m.stackx lm•hdmr introduces a new existential
parameter m. We can cope by adding a new conclusion m .

= t; adding new conclusions is the
second step in the approximation methodology. This, however, means we have to pick a t. The
most general starting point for selecting a t is to apply Skolemization to the rule. By moving
the existential quantifier for m in front of the implicitly quantified X , L, M , and R, we get a
Skolem function fmX LM R that takes four arguments. Letting t = fmX LM R results in the
SLS specification/logic program shown in Figure 8.1. (Remember that, because the specification
in Figure 8.1 is purely persistent, we will omit the optional ! annotation described in Section 4.5,
writing hd L M instead of !hd L M and so on.)

Notice that we have effectively taken a specification that freely introduces existential quan-
tification (and that therefore definitely will not terminate when interpreted as a saturating logic
program) and produced a specification that uses structured terms fmX LRM . But the intro-
duction of structured terms takes us outside the Datalog fragment, which may also lead to non-
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termination! This is not as bad as it may seem: when we want to treat a specification with
structured terms as a saturating logic program, it is simply necessary to reason explicitly about
termination. Giving any finite upper bound on the number of derivable facts is a simple and
sufficient criteria for showing that a saturating logic program terminates.

Skolem functions provide a natural starting point for approximations, even though the Skolem
constant that arises directly from Skolemization is usually more precise than we want. From
the starting point in Figure 8.1, however, we can define approximations simply by instantiating
the Skolem constant. For instance, we can equate the existentially generated destination in the
conclusion with the one given in the premise (letting fm = λX.λL.λM.λR.M ). The result is
equivalent to this specification:

push: hd L M * left X M R >-> {stack X L M * hd M R}.
pop: stack X L M1 * hd M1 M2 * right X M2 R >-> {hd L R}.

This substitution yields a precise approximation that exactly captures the behavior of the original
PDA as a saturating logic program.

To be concrete about what this means, let us recall how the PDA works and what it means
for it to accept a string. To use the linear PDA specification in Figure 7.2, we encode a string as
a sequence of linear atomic propositions ptok 1 . . . ptokn, where each ptok i either has the form
left toki di di+1 or the form right toki di di+1. The term toki that indicates whether we’re talking
about a left/right parenthesis, curly brace, square brace, etc., and d0 . . . dn+1 are n + 2 constants
of type dest.1 Let ∆ = (h:〈hd d0 d1〉 eph, x1:〈ptok 1〉 eph, . . . , xn:〈ptokn〉 eph). The PDA ac-
cepts the string encoded as ptok 1 . . . ptokn if and only if there is a trace under the signature in
Figure 7.2 where ∆ ;∗ (Ψ′;x:〈hd d0 dn+1〉 eph).

Now, say that we turn the predicates persistent and run the program described by the push
and pop rules above as a saturating logic program, obtaining a saturated process state ∆sat from
the initial process state (h:〈hd d0 d1〉 pers , x1:〈ptok 1〉 pers , . . . , xn:〈ptokn〉 pers). (We can see
from the structure of the program that LF context will remain empty.) The meta-approximation
theorem ensures that, if the original PDA accepted, then the proposition hd d0 dn+1 is in ∆sat . It
just so happens to be the case that the converse is also true – if hd d0 dn+1 is in ∆sat , the original
PDA specification accepts the string. That is why we say we have a precise approximation.

On the other hand, if we set m equal to l (letting fm = λX.λL.λM.λR.L), the result is
equivalent to this specification:

push: hd L M * left X M R >-> {stack X L L * hd L R}.
pop: stack X L M1 * hd M1 M2 * right X M2 R >-> {hd L R}.

If the initial process state contains a single atomic proposition hd d0 d1 in addition to all the left
and right facts, then the two rules above maintain the invariant that, as new facts are derived, the
first argument of hd and the second and third arguments of stack will always be d0. These argu-
ments are therefore vestigial, like the extra arguments to eval and retn discussed in Section 7.1.1,
and we can remove them from the approximate specification, resulting in the specification in
Figure 8.2.

1We previously saw destinations as only inhabited by parameters, but the guarantees given by the meta-
approximation theorem are clearer when the initial state contains destinations that are constants.
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hd: dest -> prop pers.
left: tok -> dest -> dest -> prop pers.
right: tok -> dest -> dest -> prop pers.
stack: tok -> prop pers.

push: hd M * left X M R >-> {stack X * hd R}.
pop: stack X * hd M2 * right X M2 R >-> {hd R}.

Figure 8.2: Approximated PDA specification

This logical approximation of the original PDA accepts if we run saturating logic program-
ming from the initial process state (h:〈hd d1〉 pers , x1:〈ptok 1〉 pers , . . . , xn:〈ptokn〉 pers) and
hd dn+1 appears in the saturated process state. Again, the meta-approximation theorem ensures
that any string accepted by the original PDA will also be accepted by any approximation. This
approximation will additionally accept every string where, for every form of bracket tok, at least
one left tok appears before any of the right tok. The string [ ] ] ] ( ( ) would be accepted by this
approximated PDA, but the string ( ) ] [ [ ] would not, as the first right square bracket appears
before any left square bracket.

8.3 Logical transformation: approximation

The approximation strategy demonstrated in the previous section is quite simple: a signature in
an ordered or linear logical specification can be approximated by making all atomic propositions
persistent, and a flat rule ∀x.A+ � {B+} containing only persistent atomic propositions can
be further approximated by removing premises from A+ and adding conclusions to B+. Of
particular practical importance are added conclusions that neutralize an existential quantification
with a notational definition. The approximation procedure doesn’t force us to neutralize all
such variables in this way. However, as we explained above, failing to do so almost ensures
that the specification cannot be run as a saturating logic program, and being able to interpret
specifications as saturating logic programs is a prerequisite for applying the meta-approximation
theorem (Theorem 8.4).

First, we define what it means for a specification to be an approximate version of another
specification:

Definition 8.1. A flat, concurrent, and persistent specification Σa is an approximate version
of another specification Σ if every predicate a : Πx1:τ1 . . .Πxn:τn. prop lvl declared in Σ has a
corresponding predicate a : Πx1:τ1 . . .Πxn:τn. prop pers in Σa and if for every rule r : ∀x.A+

1 �
{A+

2 } in Σ there is a corresponding rule r : ∀x.B+
1 � {B+

2 } in Σa such that:
∗ The existential quantifiers in A+

1 and A+
2 are identical to the existential quantifiers in B+

1

and B+
2 (respectively),

∗ For each premise (p+
pers or t .= s) in B+

1 , the same premise appears in A+
1 , and

∗ For each conclusion (p+
lvl or t .= s) in A+

2 , the same premise appears in B+
2 .
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While approximation is a program transformation, it is not a deterministic one: Definition 8.1
describes a whole family of potential approximations. Even the nondeterministic operationaliza-
tion transformation was just a bit nondeterministic, giving several options for operationalizing
any given deductive rule. The approximation transformation, in contrast, needs explicit infor-
mation from the user: which premises should be removed, and what new conclusions should be
introduced? While there is value in actually implementing the operationalization, defunction-
alization, and destination-adding transformations, applying approximation requires intelligence.
Borrowing a phrase from Danvy, approximation is a candidate for “mechanization by graduate
student” rather than mechanization by computer.

Next, we give a definition of what it means for a state to be an approximate version (we use
the word “generalization”) of another state or a family of states.

Definition 8.2. The persistent process state (Ψg; ∆g) is a generalization of the process state
(Ψ; ∆) if there is a substitution Ψg ` σ : Ψ such that, for all atomic propositions p+

lvl = a t1 . . . tn
in ∆, there exists a persistent proposition p+

pers = a (σt1) . . . (σtn) in ∆g.

One thing we might prove about the relationship between process states and their generaliza-
tions is that generalizations can simulate the process states they generalize: that is, if (Ψg; ∆g) is a
generalization of (Ψ; ∆) and (Ψ; ∆) ;Σ (Ψ′; ∆′) then (Ψg; ∆g) ;Σa (Ψ′g; ∆′g) where (Ψ′g; ∆′g)
is a generalization of (Ψ′; ∆′). This property, one-step simulation, is true [SP11a, Lemma 6],
and we will prove it as a corollary on the way to the proof of Theorem 8.4. However, we are
not interested in generalization per se; rather, we’re interested in a stronger property, abstraction,
that is defined in terms of generalization:

Definition 8.3. A process state (Ψa; ∆a) is an abstraction of (Ψ0; ∆0) under the signature Σ if,
for any trace (Ψ0; ∆0) ;∗Σ (Ψn; ∆n), (Ψa; ∆a) is a generalization of (Ψn; ∆n).

An abstraction of the process state (Ψ0; ∆0) is therefore a single process state that cap-
tures all possible future behaviors of the state (Ψ0; ∆0) because, for any atomic proposition
p+
lvl = a t1 . . . tn that may be derived by evolving (Ψ0; ∆0), there is a substitution σ such that

a (σt1) . . . (σtn) is already present in the abstraction. The meta-approximation theorem relates
this definition of abstraction to the concept of approximate versions of programs as specified by
Definition 8.1.

Theorem 8.4 (Meta-approximation). If Σa is an approximate version of Σ, and if there is a
state (Ψ0; ∆0) well-formed according to Σ, and if for some Ψ′0 ` σ : Ψ0 there is a trace
(Ψ′0;σ∆0) ;∗Σa (Ψa; ∆a) such that (Ψa; ∆a) is a saturated process state, then (Ψa; ∆a) is an
abstraction of (Ψ0; ∆0).

Proof. The central lemma is one-step simulation, mentioned above, which is established by in-
duction on the structure of the step. A multi-step simulation lemma immediately follows by
induction on traces: If Σa is an approximate version of Σ, (Ψg; ∆g) is a generalization of (Ψ; ∆)
and (Ψ; ∆) ;∗Σ (Ψ′; ∆′) then (Ψg; ∆g) ;∗Σa (Ψ′g; ∆′g) where (Ψ′g; ∆′g) is a generalization of
(Ψ′; ∆′) [SP11a, Lemma 7].
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The monotonicity lemma establishes that transitions in a purely-persistent specification only
increase the generality of a process state: if (Ψ; ∆) ;∗Σ (Ψ′; ∆′) and Σ defines no ordered or
mobile predicates, then (Ψ′; ∆′) is a generalization of (Ψ; ∆) [SP11a, Lemma 8].

We use the monotonicity lemma to prove the saturation lemma: if (Ψ; ∆) ;∗Σ (Ψs; ∆s),
Σ defines no ordered or mobile predicates, and (Ψs; ∆s), then whenever (Ψ; ∆) ;∗Σ (Ψ′; ∆′)
(Ψs; ∆s) is a generalization of (Ψ′; ∆′). The proof proceeds by induction on the last steps of the
trace witnessing (Ψ; ∆) ;∗Σ (Ψ′; ∆′).

∗ In the base case, (Ψ; ∆) = (Ψ′; ∆′) and we appeal to monotonicity.
∗ In the inductive case, we have (Ψ; ∆) ;∗Σ (Ψ′′; ∆′′) ;Σ (Ψ′; ∆′). By the induction hy-

pothesis we have that (Ψs; ∆s) is a generalization of (Ψ′′; ∆′′), and by one-step simulation
(Ψs; ∆s) ;Σ (Ψ′s; ∆′s) such that (Ψ′s; ∆′s) is a generalization of (Ψ′; ∆′). But saturation
means that Ψs = Ψ′s and that all the propositions in ∆′s already appear in ∆s, so (Ψs; ∆s)
must be a generalization of (Ψ′; ∆′) as well. [SP11a, Lemma 9]

Finally, we prove meta-approximation. Consider a trace (Ψ0; ∆0) ;∗Σ (Ψn; ∆n) of the
original program. By the simulation lemma, there is a trace (Ψ0;σ∆0) ;∗Σa (Ψ′n; ∆′n) where
(Ψ′n; ∆′n) is a generalization of (Ψn; ∆n). By the saturation lemma, (Ψa; ∆a) is a generalization
of (Ψ′n; ∆′n), and so because generalization is transitive, (Ψa; ∆a) is a generalization of (Ψ0; ∆0),
which is what we needed to show [SP11a, Theorem 3].

The meaning of the meta-approximation theorem is that if (1) we can approximate a specifi-
cation and an initial state and (2) we can obtain a saturated process state from that approximate
specification and approximate initial state, then the saturated process state captures all possible
future behaviors of the (non-approximate) initial state.

8.4 Control flow analysis

The initial process state for destination-passing SSOS specifications generally has the form
(d:dest;x:〈eval t d〉) for some program represented by the LF term t = peq. This means that
we can use the meta-approximation result to derive abstractions from initial expressions e using
the saturating logic programming interpretation of approximated SSOS specifications.

A control flow analysis is a fundamental analysis on functional programs, attributed to Shiv-
ers [Shi88]. It is used for taking an expression and “determining for each subexpression a hope-
fully small number of functions that it may evaluate to; thereby it will determine where the flow
of control may be transferred to in the case where the subexpression is the operator of a function
application” [NNH05, p. 142]. That is, we want to take a program and find, for every subex-
pression e of that unevaluated program, all the values v that the subexpression may evaluate to
over the course of evaluating the program to a value. Because we are talking about subexpres-
sions of the unevaluated program, the answer might not be unique. Consider the evaluation of
(λf . . . (f (λy . . .)) . . . (f (λz . . .)) . . .) (λx.x). The function λx.x gets bound to f and therefore
may get called twice, once with the argument (λy . . .) and once with the argument (λz . . .). The
subexpression x of λx.x can therefore evaluate to (λy . . .) in the context of the call f (λy . . .)
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and to (λz . . .) in the context of the call f (λz . . .). As a may-analysis, the output of a control
flow analysis is required to report both of these possibilities.2

When we use a control flow analysis, it is relevant that the calculation of which subexpres-
sions evaluate to which values is done in service of a different goal: namely, determining which
functions may be called from which calling sites. However, the ultimate goal of control flow anal-
ysis is irrelevant to our discussion of deriving control flow analyses from SSOS specifications,
so we will concentrate on the question of which subexpressions evaluate to which values. Before
we begin, however, we will address the issue of what it even means to be a (closed) subterm of
an expression e that has been encoded with higher-order abstract syntax into the canonical forms
of LF.

8.4.1 Subexpressions in higher-order abstract syntax
When given a term a (b c c), it is clear that there are three distinct subterms: the entire term,
b c c, and c. Therefore, it is meaningful to bound the size of a saturated process state using
some function that depends on the number of subterms of the original term. But what are the
subterms of lam (λx. appx x), and how can we write a saturating logic program that derives all
those subterms? The rule for application is easy:

sub/app : ∀e1:exp.∀e2:exp. subterms(app e1 e2)� {subterms e1 • subterms e2}

What about the rule for lambda abstractions? Experience with LF says that, when we open up
a binder, we should substitute a fresh variable into that binder. This would correspond to the
following rule:

sub/lam/ohno : ∀e:exp→ exp. subterms(lam(λx.e x))� {∃x. subterms(e x)}

The rule sub/lam/ohno will, as we have discussed, lead to nontermination when we interpret
the rules as a saturating logic program. The solution is to apply Skolemization as described in
Section 8.2, which introduces a new constant we will call var. The rule sub/lam/ohono can then
be approximated as a terminating rule:

sub/lam : ∀e:exp→ exp. subterms(lam(λx.e x))� {subterms(e(var(λx.e x)))}

The subterms of any closed term e of LF type exp can then be enumerated by running this sat-
urating logic program starting with the fact subterms(e), where subterms is a persistent positive
proposition. We start counting subterms from the outside, and stop when we reach a variable rep-
resented by a term var(λx.e). The logic program and discussion above imply that there are three
distinct subterms of lam (λx. appx x): the entire term, app (var(λx. appx x)) (var(λx. appx x)),
and var(λx. appx x).

Another solution, discussed in the next section, is to uniquely tag the lambda expression
with a label. This has the same effect of allowing us to associate the variable x with a different
concrete term, the tag, that represents the site where x was bound.

2This statement assumes that both of the calling sites f (λy . . .) and f (λz . . .) are reachable: the control flow
analysis we derive performs some dead-code analysis, and it may not report that x evaluates to (λy . . .), for instance,
if the call f (λy . . .) is certain to never occur.
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bind: exp -> exp -> prop pers.
eval: exp -> dest -> prop lin.
retn: exp -> dest -> prop lin.
cont: frame -> dest -> dest -> prop lin.

ev/bind: eval X D * !bind X V >-> {retn V D}.

ev/lam: eval (lam \x. E x) D >-> {retn (lam \x. E x) D}.

ev/app: eval (app E1 E2) D
>-> {Exists d1. eval E1 d1 * cont (app1 E2) d1 D}.

ev/app1: retn (lam \x. E x) D1 * cont (app1 E2) D1 D
>-> {Exists d2. eval E2 d2 * cont (app2 \x. E x) d2 D}.

ev/app2: retn V2 D2 * cont (app2 \x. E x) D2 D
>-> {Exists x. !bind x V *

Exists d3. eval (E x) d3 * cont app3 d3 D}.

ev/app3: retn V D3 * cont app3 D3 D >-> {retn V D}.

Figure 8.3: Alternative environment semantics for CBV evaluation

8.4.2 Environment semantics

The starting point for deriving a control flow analysis is the environment semantics for call-by-
value shown in Figure 8.3. It differs from the environment semantics shown in Figure 6.19 in
three ways. First and foremost, it is a destination-passing specification instead of an ordered
abstract machine specification, but that difference is accounted for by the destination-adding
transformation in Chapter 7. A second difference is that the existentially generated parameter x
associated with the persistent proposition bindx v is introduced as late as possible in the multi-
stage protocol for evaluating an application (rule ev/app2 in Figure 8.3), not as early as possible
(rule ev/appenv1 in Figure 6.19). The third difference is that there is an extra frame app3 and an
extra rule ev/app3 that consumes such frames. The app3 frame is an important part of the control
flow analysis we derive, but in [SP11a] the addition of these frames was otherwise unmotivated.
Based on our discussion of the logical correspondence in Chapters 5 and 6, we now have a princi-
pled account for this extra frame and rule: it is precisely the pattern we get from operationalizing
a natural semantics without tail-recursion optimization and then applying defunctionalization.

8.4.3 Approximation to 0CFA

In order for us to approximate Figure 8.3 to derive a finite control flow analysis, we turn all linear
atomic propositions persistent and then must deal with the variables introduced by existential
quantification. The variable x introduced in ev/app2 will be equated with var(λx.E x), which is
consistent with makingE x – which is now equal toE(var(λx.E x)) – a subterm of lam(λx.E x).
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bind: exp -> exp -> prop pers.
eval: exp -> exp -> prop pers.
retn: exp -> exp -> prop pers.
cont: frame -> exp -> exp -> prop pers.

ev/bind: eval X D * bind X V >-> {retn V D}.

ev/lam: eval (lam \x. E x) D >-> {retn (lam \x. E x) D}.

ev/app: eval (app E1 E2) D
>-> {Exists d1. eval E1 d1 * cont (app1 E2) d1 D *

d1 == E1}.

ev/app1: retn (lam \x. E x) D1 * cont (app1 E2) D1 D
>-> {Exists d2. eval E2 d2 * cont (app2 \x. E x) d2 D *

d2 == E2}.

ev/app2: retn V2 D2 * cont (app2 \x. E x) D2 D
>-> {Exists x. bind x V *

Exists d3. eval (E x) d3 * cont app3 d3 D *
x == var (\x. E x) *
d3 == E x}.

ev/app3: retn V D3 * cont app3 D3 D >-> {retn V D}.

Figure 8.4: A control-flow analysis derived from Figure 8.3

The new constructor var is also a simplified Skolem function for x that only mentions the LF term
E; the most general Skolem function in this setting would have also been dependent on V , D,
and D2. The existentially generated variable x was also the first argument to bind, so bind, as a
relation, will now associate binding sites and values instead of unique variables and values.

The discussion above pertains to the existentially generated variable x in rule ev/app2, but
we still need some method for handling destinations d1, d2, and d3 in ev/app, ev/app1, and
ev/app2 (respectively). To this end, we need recall the question that we intend to answer with
control flow analysis: what values may a given subexpression evaluate to? A destination passing
specification attempts to return a value to a destination: we will instead return to an expression
by equating destinations d with the expressions they represent. One way to do this would be to
introduce a new constructor d : exp → dest, but we can equivalently conflate the two types exp
and dest to get the specification in Figure 8.4.

The specification in Figure 8.4 has a point of redundancy along the lines of the redundancy
in our second PDA approximation: the rules maintain the invariants that the two arguments to
eval e d are always the same. Therefore, the second argument to eval can be treated as vestigial;
by removing that argument, we get a specification equivalent to Figure 8.5. That figure includes
another simplifications as well: instead of introducing expressions d1, d2, and d3 by existential
quantification just to equate them with expressions e1, e2, and e, we substitute in the equated
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bind: exp -> exp -> prop pers.
eval: exp -> prop pers.
retn: exp -> exp -> prop pers.
cont: frame -> exp -> exp -> prop pers.

ev/bind: eval X * bind X V >-> {retn V X}.

ev/lam: eval (lam \x. E x) >-> {retn (lam \x. E x) (lam \x. E x)}.

ev/app: eval (app E1 E2) * E == app E1 E2
>-> {eval E1 * cont (app1 E2) E1 E}.

ev/app1: retn (lam \x. E0 x) E1 * cont (app1 E2) E1 E
>-> {eval E2 * cont (app2 \x. E0 x) E2 E}.

ev/app2: retn V2 E2 * cont (app2 \x. E0 x) E2 E
>-> {Exists x. bind x V *

eval (E0 x) * cont app3 (E0 x) E *
x == var (\x. E0 x)}.

ev/app3: retn V E3 * cont app3 E3 E >-> {retn V E}.

Figure 8.5: Simplification of Figure 8.4 that eliminates the vestigial argument to eval

expressions where the respective destinations appeared in Figure 8.4; this modification does not
change anything at the level of synthetic inference rules.

Let’s consider the termination of specification in Figure 8.5 interpreted as a saturating logic
program. Fundamentally, the terms in the heads of rules are all subterms (in the generalized
sense of Section 8.4.1), which is a sufficient condition for the termination of a saturating logic
program. More specifically, consider that we start the database with a single fact eval peq, where
peq has n subterms by the analysis in Section 8.4.1. We can only ever derive n new facts eval e –
one for every subterm. If we deduced that every subexpression was a value that could be returned
at every subexpression, there would still be only n2 facts retn e e′, and the same analysis holds for
facts of the form cont app3 e e′. A fact of the form cont (app1 e2) e1 e will only be derived when
e = app e1 e2, so there are at most n of these facts. A fact of the form cont (app2λx. e0 x) e2 e
will only be derived when e = app e1 e2 for some e1 that is also a subterm, so there are most
n2 of these facts too. This means that we can derive no more than 2n + 3n2 facts starting from
a database containing eval peq, where e has n subterms. We could give a much more precise
analysis than this, but this imprecise analysis certainly bounds the size of the database, ensuring
termination, which was our goal.

There is one important caveat to the control flow analysis we have derived analysis. If for
some value v we consider the program p((λx.x) (λy.y)) vq, we might expect a reasonable con-
trol flow analysis to notice that only pλy.yq is passed to the function pλx.xq and that only v
is passed to the function pλy.yq. Because of our use of higher-order abstract syntax, however,
pλy.yq and pλx.xq are α-equivalent and therefore equal in the eyes of the logic programming
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interpreter. This is not a problem with correctness, but it means that our analysis may be less pre-
cise than expected, because the analysis distinguishes only subterms, not subterm occurrences.
One solution would be to add distinct labels to terms, marking the α-equivalent λx.x and λy.y
with their distinct positions in the overall term. Adding a label on the inside of every lambda-
abstraction would seem to suffice, and in any real example labels would already be present in the
form of source-code positions or line numbers. The alias analysis presented in the next section
demonstrates the use of such labels.

8.4.4 Correctness

The termination analysis for to the derived specification in Figure 8.5, together with the meta-
approximation theorem (Theorem 8.4), ensures that we have derived some sort of program anal-
ysis. How do we know that it is a control flow analysis?

The easy option is to simply inspect the analysis and compare it to the behavior of the SSOS
semantics whose behavior the analysis is approximating. Note that the third argument e to
cont f e′ e is always a term app e1 e2 – that is, a call site. The rule ev/app2 starts evaluating
the function lam(λx.e0 x) and generates the fact cont app3 (e(var(λx.e0 x))) e. This means that,
in the course of evaluating some initial expression einit , the function lam(λx.e0 x) may be called
from the call site e only if cont app3 (e0(var(λx.e0 x))) e appears in a saturated process state that
includes the persistent atomic proposition eval(einit).

The analysis above is a bit informal, however. Following Nielson et al., an acceptable control
flow analysis takes the form of two functions. The first, Ĉ, is a function from expressions e to
sets of values {v1, . . . , vn}, and the second, ρ̂, is a function from variables x to sets of values
{v1, . . . , vn}. Ĉ and ρ̂ are said to represent an acceptable control flow analysis for the expression
e if a coinductively defined judgment (Ĉ, ρ̂) |= e holds.

We would like to interpret a saturated program state ∆ as a (potentially acceptable) control
flow analysis as follows (keeping in mind that, given our current interpretation of subterms,
pxq = var(λx.E x) for some E):

∗ Ĉ(e) = {v | retn pvq peq}, and

∗ ρ̂(x) = {v | bind pxq pvq}.
Directly adapting Nielson et al.’s definition of an acceptable control flow analysis from [NNH05,
Table 3.1] turns out not to work. The control flow analysis we derived in Figure 8.5 is rather
sensitive to non-termination: if we let ω = (λx. x x) (λx. x x), then our derived control flow
analysis will not analyze the argument e2 in an expression ω e2, nor will it analyze the function
body e in an expression (λx.e)ω. Nielson et al.’s definition, on the other hand, demands that
both e2 in ω e2 and e in (λx.e)ω be analyzed. In Exercise 3.4, of their book, Nielson et al. point
out that a modified analysis, which takes order of evaluation into account, is possible.

We can carry out Nielson et al.’s Exercise 3.4 to get the definition of an acceptable control
flow analysis given in Figure 8.6. Relative to this definition, it is possible to prove that the
abstractions computed by the derived SLS specification in Figure 8.5 are acceptable control flow
analyses.
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[var ] (Ĉ, ρ̂) |= x iff ρ̂(x) ⊆ Ĉ(x)

[lam] (Ĉ, ρ̂) |= λx.e iff {(λx.e)} ⊆ Ĉ(λx.e)

[app] (Ĉ, ρ̂) |= e1 e2 iff

(Ĉ, ρ̂) |= e1 ∧
(∀(λx.e0) ∈ Ĉ(e1) :

(Ĉ, ρ̂) |= e2 ∧
(Ĉ(e2) ⊆ ρ̂(x)) ∧
(∀(v) ∈ Ĉ(e2) :

(Ĉ, ρ̂) |= e0 ∧
(Ĉ(e0) ⊆ Ĉ(e1 e2))))

Figure 8.6: Coinductive definition of an acceptable control flow analysis

Theorem 8.5. If ∆ is a saturated process state that is well-formed according to the signature
in Figure 8.5, and if Ĉ and ρ̂ are defined in terms of ∆ as described above, then eval peq ∈ ∆
implies that (Ĉ, ρ̂) |= e.

Proof. By coinduction on the definition of acceptability in Figure 8.6, and case analysis on the
form of e.

– e = x, so peq = pxq = var(λx.E0 x)

We have to show ρ̂(x) ⊆ Ĉ(x). In other words, if bind pxq pvq ∈ ∆, then retn pvq pxq ∈
∆. Because eval peq ∈ ∆, this follows by the presence of rule ev/bind – if eval peq ∈ ∆
and bind pxq pvq ∈ ∆, then retn pvq pxq ∈ ∆ as well; if it were not, the process state
would not be saturated!

– e = λx.e, so peq = pλx.e0q = lam(λx.E0 x)

We have to show {(λx.e)} ⊆ Ĉ(λx.e). In other words, retn pλx.eq pλx.eq ∈ ∆. This
follows by rule ev/lam by the same reasoning given above.

– e = e1 e2, so peq = pe1 e2q = appE1E2

We have to show several things. The first, that (Ĉ, ρ̂) |= e1, follows from the coinduction
hypothesis – by rule ev/app, eval pe1q ∈ ∆. That rule also allows us to conclude that
cont app1 pe2q pe1q pe1 e2q ∈ ∆.

Second, given a (λx.e0) ∈ Ĉ(e1) (meaning retn pλx.e0q pe1q ∈ ∆) we have to show that
(Ĉ, ρ̂) |= e2. This follows from the coinduction hypothesis: by rule ev/app1, because
retn pλx.e0q pe1q ∈ ∆ and cont (app1 pe2q) pe1q pe1 e2q ∈ ∆, eval pe2q ∈ ∆. This same
reasoning allows us to conclude that cont (app2 (λx. pe0q)) pe2q pe1 e2q ∈ ∆ given that
(λx.e0) ∈ Ĉ(e1).
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Third, given a (λx.e0) ∈ Ĉ(e1), we have to show that (Ĉ(e2) ⊆ ρ̂(x)): in other words,
that retn pv2q pe2q ∈ ∆ implies bind (var(λx. pe0q)) pv2q ∈ ∆. Because we know by
the reasoning above that cont (app2 (λx. pe0q)) pe2q pe1 e2q ∈ ∆, this follows by rule
ev/app2.

The same reasoning from ev/app2 allows us to conclude that (λx.e0) ∈ Ĉ(e1) and retn pv2q pe2q ∈
∆ together imply eval pe0q ∈ ∆ (and therefore that (Ĉ, ρ̂) |= e0 by the coinduction hy-
pothesis, the fourth thing we needed to prove) and that cont app3 pe0q pe1 e2q ∈ ∆ (which
with ev/app3 implies Ĉ(e0) ⊆ Ĉ(e1 e2), the last thing we needed to prove).

This completes the proof.

We claim that, if we had started with an analysis that incorporated both parallel evaluation
of functions and arguments (in the style of Figure 7.6 from Section 7.2.1) and the call-by-future
functions discussed in Figure 7.9 from Section 7.2.3, then the derived analysis would have sat-
isfied a faithful representation of Nielson et al.’s acceptability relation. The proof, in this case,
should proceed along the same lines as the proof of Theorem 8.5.

8.5 Alias analysis
The control flow analysis above was derived from the SSOS specification of a language that
looked much like the Mini-ML-like languages considered in Chapters 6 and 7, and we described
how to justify such an analysis in terms of coinductive specifications of what comprises a well-
designed control flow analysis.

In this section, we work in the other direction: the starting point for this specification was
the interprocedural object-oriented alias analysis presented as a saturating logic program in
[ALSU07, Chapter 12.4]. We then worked backwards to get a SSOS semantics that allowed
us to derive that logic program as closely as possible; the result was a monadic SSOS semantics.
There should not be any obstacle to deriving an alias analysis from a semantics that looks more
like the specifications elsewhere in this dissertation.

8.5.1 Monadic language
The language we consider differentiates atomic actions, which we will call expressions (and
encode in the LF type exp) and procedures or commands (which we encode in the LF type
cmd). There are only two commands m in our monadic language. The first command, retx, is a
command that returns the value bound to the variable x (rule ev/ret in Figure 8.7). The second
command, pbndl x← e inmq = bnd l peqλx.pmq, evaluates e to a value, binds that value to the
variable x, and then evaluates m. Note the presence of l in the bind syntax; we will call it a label,
and we can think of it as a line number or source-code position from the original program.

In the previous languages we have considered, values v were a syntactic refinement of the ex-
pressions e. In contrast, our monadic language will differentiate the two: there are five expression
forms and three values that we will consider. An expression pλx.eq = funλx.peq evaluates to
a value pλlx.eq = lam l λx.peq, where the label l represents the source code position where the
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bind: variable -> value -> prop pers.
eval: cmd -> dest -> prop lin.
retn: value -> dest -> prop lin.
cont: frame -> dest -> dest -> prop lin.

ev/ret: eval (ret X) D * !bind X V >-> {retn V D}.

ev/fun: eval (bnd L (fun \x. M0 x) (\x. M x)) D
>-> {Exists y. eval (M y) D * !bind y (lam L \x. M0 x)}.

ev/call: eval (bnd L (call F X) (\x. M x)) D *
!bind F (lam L0 (\x. M0 x)) *
!bind X V
>-> {Exists d0. Exists y.

eval (M0 y) d0 * cont (call1 L (\x. M x)) d0 D *
!bind y V}.

ev/call1: retn V D0 * cont (call1 L (\x. M x)) D0 D
>-> {Exists y. eval (M y) D * !bind y V}.

Figure 8.7: Semantics of functions in the simple monadic language

function was bound. When we evaluate the command pbndl y ← λx.e inmq, the value pλlx.eq
gets bound to y in the body of the command m (rule ev/fun in Figure 8.7).

The second expression form is a function call: pf xq = app f x. To evaluate a function call,
we expect a function value (which is a command m0 with one free variable) to be bound to the
variable f ; we then store the rest of the current command on the stack and evaluate the command
m0 to a value. Note that the rule ev/call in Figure 8.7 also stores the call site’s source-code
location l on the stack frame. The reason for storing a label here is that we need it for the alias
analysis. However, it is possible to independently motivate adding these source-code positions
to the operational semantics: for instance, it would allow us to model the process of giving a
stack trace when an exception is raised. When the function we have called returns (rule ev/call1
in Figure 8.7), we continue evaluating the command that was stored on the control stack.

The rules for mutable pairs are given in Figure 8.8. Evaluating the expression newpair allo-
cates a tuple with two fields fst and snd and yields a value loc l referring to the tuple; both fields
in the tuple are initialized to the value null, and each field is represented by a separate linear cell
resource (rule ev/new). The expressions px.fstq = projx fst and px.sndq = projx snd expect a
pair location to be bound to x, and yield the value stored in the appropriate field of the mutable
pair (rule ev/proj). The expressions px.fst := yq = setx fst y and px.snd := yq = setx snd y
work much the same way. The difference is that the former expressions do not change the ac-
cessed field’s contents, whereas the latter expressions replace the accessed field’s contents with
the value bound to y (rule ev/set).

This language specification bears some similarity to Harper’s Modernized Algol with free
assignables [Har12, Chapter 36]. The free assignables addendum is critical: SSOS specifica-
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cell: locvar -> field -> value -> prop lin.

ev/new: eval (bnd L newpair (\x. M x)) D
>-> {Exists y. Exists l’. eval (M y) D *

cell l’ fst null * cell l’ snd null *
!bind y (loc l’)}.

ev/proj: eval (bnd L (proj X Fld) (\x. M x)) D *
!bind X (loc L’) *
cell L’ Fld V
>-> {Exists y. eval (M y) D * cell L’ Fld V *

!bind y V}.

ev/set: eval (bnd L (set X Fld Y) (\x. M x)) D *
!bind X (loc L’) *
!bind Y V *
cell L’ Fld V’
>-> {Exists y. eval (M y) D *

cell L’ Fld V *
!bind y V’}.

Figure 8.8: Semantics of mutable pairs in the simple monadic language

tions do not have a mechanism for enforcing the stack discipline of Algol-like languages.3 The
other major difference is that Harper’s version of Algol does not allow expressions to access the
state. For our language to behave similarly, the expressions newpair, x.fst, x.snd, x.fst := y, and
x.snd := y would need to be commands and not expressions; we make them expressions only
for the convenience of a more regular presentation.

8.5.2 Approximation and alias analysis

To approximate the semantics of our monadic language, we can follow the methodology from
before and turn the specification persistent. A further approximation is to remove the last premise
from ev/set, as the meta-approximation theorem allows – the only purpose of this premise in
Figure 8.8 was to consume the ephemeral proposition cell l′ fld v, and this is unnecessary if cell
is not an ephemeral predicate. Having made these two moves (turning all propositions persistent,
and removing a premise from ev/set), we are left with three types of existentially-generated
variables that must be equated with concrete terms in order for our semantics to be interpreted as
a saturating logic program:

∗ Variables y, introduced by every rule except for ev/ret,

3It is, however, possible to represent Algol-like languages that maintain a stack discipline even though the ma-
chinery of SLS does not enforce that stack discipline. This is analogous to situation with pointer equality discussed
in Section 6.5.1, as a stack discipline is an invariant that can be maintained in SLS even though the framework’s
proof theory does not enforce the invariant.
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bind: label -> value -> prop pers.
eval: cmd -> label -> prop pers.
retn: value -> label -> prop pers.
cont: frame -> label -> label -> prop pers.
cell: label -> field -> value -> prop pers.

ev/ret: eval (ret X) D * bind X V >-> {retn V D}.

ev/fun: eval (bnd L (fun \x. M0 x) (\x. M x)) D
>-> {eval (M L) D * bind L (lam L \x. M0 x)}.

ev/call: eval (bnd L (call F X) (\x. M x)) D *
bind F (lam L0 \x. M0 x) *
bind X V
>-> {eval (M0 L0) L0 * cont (call1 L (\x. M x)) L0 D}.

ev/call1: retn V D0 * cont (call1 L (\x. M x)) D0 D
>-> {eval (M L) D * bind L V}.

ev/new: eval (bnd L newpair (\x. M x)) D
>-> {eval (M L) D *

cell L fst null * cell L snd null *
bind L (loc L)}.

ev/proj: eval (bnd L (proj X Fld) (\x. M x)) D *
bind X (loc L’) *
cell L’ Fld V
>-> {eval (M L) D * cell L’ Fld V *

bind L V}.

ev/set: eval (bnd L (set X Fld Y) (\x. M x)) D *
bind X (loc L’) *
bind Y V
>-> {eval (M L) D * cell L’ Fld V *

bind L V’}.

Figure 8.9: Alias analysis for the simple monadic language
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∗ Mutable locations l, introduced by rule ev/new, and

∗ Destinations d; the only place where a destination is created by the destination-adding
transformation is in rule ev/call.

Variables y are generated to be substituted into the body of some command, so we could
equate them with the Skolemized function body as we did when deriving a control flow analysis
example. Another option comes from noting that, for any initial source program, every command
is associated with a particular source code location, so a simpler alternative is just to equate the
variable with that source code location. This is why we stored labels on the stack: if we had not
done so, then the label l associated with m in the command pbndl x← λx.m0 inmq would no
longer be available when we needed it in rule ev/call1.

We deal with mutable locations l in a similar manner: we equate them with the label l repre-
senting the line where that cell was generated.

There are multiple ways to deal with the destination d0 generated in rule ev/call. We want
our analysis, like Aho et al.’s, to be insensitive to control flow, so we will equate d0 with the label
l0 associated with the function we are calling. If we instead equated d0 with the label l associated
with the call-site or with the pair of the call site and the called function, the result would be an
analysis that is more sensitive to control flow.

The choices described above are reflected in Figure 8.9, which takes the additional step of
inlining uses of equality in the conclusions of rules. We can invoke this specification as a program
analysis by packaging a program as a single command m and deriving a saturated process state
from the initial process state (linit :loc;x:〈eval pmq linit〉). The use of source-code position labels
makes the answers to some of the primary questions asked of an alias analysis quite concise. For
instance:

∗ Might the first component of a pair created at label l1 ever reference a pair created at
label l2? Only if cell l1 fst (loc l2) appears in the saturated process state (and likewise for
the second component).

∗ Might the first component of a pair created at label l1 ever reference the same object
as the first component of a pair created at label l2? Only if there is some l′ such that
cell l1 fst (loc l′) and cell l1 fst (loc l′) both appear in the saturated process state.

8.6 Related work

The technical aspects of linear logical approximation are similar to work done by Bozzano et
al. [BDM02, BDM04], which was also based on the abstract interpretation of a logical spec-
ification in linear logic. They encode distributed systems and communication protocols in a
framework that is similar to the linear fragment of SLS without equality. Abstractions of those
programs are then used to verify properties of concurrent protocols that were encoded in the logic
[BD02].

There are a number of significant difference between our work and Bozzano et al.’s, how-
ever. The style they use to encode protocols is significantly different from any of the SSOS
specification styles presented in this dissertation. They used a general purpose approximation,

230



October 15, 2012
DRAFT

which could therefore potentially be mechanized in the same way we mechanized transforma-
tions like operationalization; in contrast, the meta-approximation result described here captures
a whole class of approximations. Furthermore, Bozzano et al.’s methods are designed to consider
properties of a system as a whole, not static analyses of individual inputs as is the case in our
work.

Work by Might and Van Horn on abstracting abstract machines can be seen as a parallel ap-
proach to our methodology in a very different setting [MSV10, Mig10, VM10]. Their emphasis
is on deriving a program approximation by approximating a functional abstract interpreter for a
programming language’s operational semantics. Their methodology is similar to ours in large
part because we are doing the same thing in a different setting, deriving a program approxima-
tion by approximating a destination-passing SSOS specification (which we could, in turn, have
derived from an ordered abstract machine by destination-adding).

Many of the steps that they suggest for approximating programs have close analogues in our
setting. For instance, their store-allocated bindings are analogous to the SSOS environment se-
mantics, and their store-allocated continuations – which they motivate by analogy to implemen-
tation techniques for functional languages like SML/NJ – are precisely the destinations that arise
naturally from the destination-adding transformation. The first approximation step we take is for-
getting about linearity in order to obtain a (non-terminating) persistent logical specification. This
step is comparable to Might’s first approximation step of “throwing hats on everything” (named
after the convention in abstract interpretation of denoting the abstract version of a state space Σ
as Σ̂. The “mysterious” introduction of power domains that this entails is, in our setting, a per-
fectly natural result of relaxing the requirement that there be at most one persistent proposition
bindx v for every x. As a final point of comparison, the “abstract allocation strategy” discussed
in [VM10] is quite similar to our strategy of introducing and then approximating Skolem func-
tions as a means of deriving a finite approximation. Our current discussion of Skolem functions
in Section 8.4 is partially inspired by the relationship between our use of Skolemization and the
discussion of abstract allocation in [VM10].

The independent discovery of a similar set of techniques for achieving similar goals in such
different settings (though both approaches were to some degree inspired by Van Horn and Mair-
son’s investigations of the complexity of k-CFA [VM07]) is another indication of the generality
of both techniques, and the similarity also suggests that the wide variety of approximations con-
sidered in [VM10], as well as the approximations of object-oriented programming languages in
[Mig10], can be adapted to this setting.
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Part III

Reasoning about substructural logical
specifications

233



October 15, 2012
DRAFT



October 15, 2012
DRAFT

Chapter 9

Generative invariants

So far, we have presented SLS as a framework for presenting transition systems. This view fo-
cuses on synthetic transitions as a way of relating pairs of process states, either with one transition
(Ψ; ∆) ; (Ψ′; ∆′) or with a series of transitions (Ψ; ∆) ;∗ (Ψ′; ∆′). This chapter will focus on
another view of concurrent SLS specifications as grammars for describing well-formed process
states. This view was presented previously in the discussions of adequacy in Section 4.4.1 and
in Section 6.3.

The grammar-like specifications that describe well-formed process states are called genera-
tive signatures, and generative signatures can be used to specify sets of process states, or worlds.
By the analogy with grammars, we could also describe worlds as languages of process states
recognized by the grammar. In our previous discussions of adequacy in Section 4.4.1 and in
Section 6.3, the relevant world was a set of process states that we could put in bijective corre-
spondence with the states of an abstract machine.

Generative signatures are a significant extension of context-free grammars, both because of
the presence of dependent types and because of the presence of linear and persistent resources
in SLS. However, we will not endeavor to study generative signatures in their own right in this
chapter or this dissertation. Rather, we will use generative signatures for one very specific pur-
pose: showing that, under some generative signature ΣGen that defines a world W , whenever
(Ψ; ∆) ∈ W and (Ψ; ∆) ;Σ (Ψ′; ∆′) it is always the case that (Ψ′; ∆′) ∈ W . (The signa-
ture Σ encodes the transition system we are studying.) In such a case, the world or language of
well-formed process states is called a generative invariant of Σ.

Type preservation
Narrowing our focus even further, in this chapter our sole use of generative invariants will be de-
scribing well-formedness and well-typedness invariants of the sorts of substructural operational
semantics specifications presented in Part II. When we want to prove language safety for a small-
step SOS specification like e 7→ e′ from Section 6.6.2 and the beginning of Chapter 6, we also
define a judgment x1:tp1 , . . . , xn:tpn ` e : tp. This typing judgment expresses that e has type
tp if the expression variables x1, . . . , xn are respectively assumed to have the types tp1 , . . . , tpn .
(Note that tp is an object-level type as described in Section 9.3, not an LF type τ from Chapter 4.)

Well-typedness invariants are important because they allow us to prove language safety, the
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property (discussed way back in the introduction) that a language specification is completely free
from undefined behavior. The standard “safety = progress + preservation” formulation of type
safety is primarily a statement about invariants. We specify some property (“well-typed with type
tp”), show that it is invariant under execution (preservation: “if e 7→ e′ and e has type tp, then e′

has type tp”), and show that any state with that property has well-defined behavior (progress: “if
e has type tp, it steps or is a value”).

The purpose of this chapter is to demonstrate that generative invariants are a solid methodol-
ogy for describing invariants of SLS specifications, especially well-formedness and well-typedness
invariants of substructural operational semantics specifications like the ones presented in Part II.
As we have already seen, well-formedness invariants are major part of adequacy theorems. In
the next chapter, we will show that well-typedness invariants are sufficient for proving progress
theorems, meaning that generative invariants can form the basis of progress-and-preservation-
style safety theorems for programming languages specified in SLS. These two chapters establish
the centerpiece of the third refinement of our central thesis:

Thesis (Part III): The SLS specification of the operational semantics of a program-
ming language is a suitable basis for formal reasoning about properties of the spec-
ified language.

Overview
In Section 9.1 we review how generative signatures define a world and show how the regular
worlds that Schürmann implemented in Twelf [Sch00] fall out as a special case of the worlds
described by generative signatures. After this, the core of this chapter plays the same game –
describing a well-formedness or well-typedness property with a generative signature and proving
that the property is a generative invariant – five times. In each step, we motivate and explain new
concepts.

∗ In Section 9.2 we extend the well-formedness invariant for sequential ordered abstract
machines described in Section 6.3 to parallel ordered abstract machines with failure, setting
up the basic pattern.

∗ In Section 9.3 we switch from specifying well-formed process states to specifying well-
typed process states. This is not a large technical shift, but conceptually it is an important
step from thinking about adequacy properties to thinking about preservation theorems.

∗ In Section 9.4 we describe how generative invariants can be established for the sorts of
stateful signatures considered in Section 6.5. This specification introduces the promise-
then-fulfill pattern and also requires us to consider unique index properties of specifications
(Section 9.4.2).

∗ In Section 9.5 we consider invariants for specifications in the image of the destination-
adding transformation from Chapter 7. This formalization, which is in essence a SLS en-
coding of Cervesato and Sans’s type system from [CS13], also motivates the introduction
of unique index sets to state unique index properties more concisely.

∗ In Section 9.6 we consider the peculiar case of first-class continuations, which require us
to use persistent continuation frames as described in Section 7.2.4. Despite the superficial
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similarities between the SSOS semantics for first-class continuations and the other SSOS
semantics considered in this dissertation, first-class continuations fundamentally change
the control structure, and this is reflected in a fundamental change to the necessary gener-
ative invariants.

We conclude in Section 9.7 with a brief discussion of the mechanization of generative invariants,
though this is primarily left for future work. In general, this chapter aims to be the first word in
the use of generative invariants, but it is by no means the last.

9.1 Worlds
Worlds are nothing more or less than sets of stable process states (Ψ; ∆) as summarized in Ap-
pendix A. In this chapter, we will specify worlds with the combination of two artifacts: an initial
process state and a generative signature.

Definition 9.1. A generative signature is a SLS signature where the ordered, mobile, and per-
sistent atomic propositions can be separated into two sets – the terminals and the nonterminals.
Synthetic transitions enabled by a generative signature only consume (or reference) nontermi-
nals and LF terms, but their output variables can include LF variables, variables associated with
terminals, and variables associated with nonterminals.

The use of terminal/nonterminal terminology favors the view of generative signatures as context-
free grammars, an analogy that holds well for ordered nonterminals. Mobile nonterminals behave
more like obligations when we use them as part of the promise-then-fulfill pattern (Section 9.4
and beyond), and persistent nonterminals behave more like constraints.

A generative signature, together with an initial state (Ψ0; ∆0), describes a world with the
help of the restriction operator (Ψ; ∆)�Σ introduced in Section 4.4.2. To recap, if (Ψ; ∆) is
well-defined under the generative signature ΣGen , and Σ is any signature that includes all of
the generative signature’s terminals and all of its LF declarations but none of its nonterminals,
then (Ψ; ∆)�Σ is only defined when the only remaining nonterminals in ∆ are persistent and can
therefore be filtered out of ∆. When the classification of terminals and nonterminals is clear, we
will leave off the restricting signature and just write (Ψ; ∆)�.

As a concrete example, let nt/foo be a persistent nonterminal, let nt/bar be an ordered nonter-
minal, and let t/baz be an ordered terminal. Then (x:〈nt/bar〉 ord , y:〈t/baz〉 ord)� is undefined,
(y:〈t/baz〉 ord)� = (y:〈t/baz〉 ord), and (x:〈nt/foo〉 pers , y:〈t/baz〉 ord)� = (y:〈t/baz〉 ord).
Recalling the two-dimensional notation from Chapter 4, we can re-present these three statements
as follows:

(y:〈t/baz〉 ord)

(y:〈t/baz〉 ord)

(x:〈nt/foo〉 pers , y:〈t/baz〉 ord)

(y:〈t/baz〉 ord)

(x:〈nt/bar〉 ord , y:〈t/baz〉 ord)

(y:〈t/baz〉 ord)

Definition 9.1 is intentionally quite broad – it need not even be decidable whether a pro-
cess state belongs to a particular world.1 Future tractable analyses will therefore presumably be

1Proof: consider the initial state (x:〈gen〉 ord) and the rule ∀e.∀v. gen • !(ev e v) � {terminating e}. The
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based upon further restrictions of the very general Definition 9.1. Context-free grammars are
one obvious specialization of generative signatures; we used this correspondence as an intuitive
guide in Section 4.4.1. Perhaps less obviously, the regular worlds of Twelf [Sch00] are another
specialization of generative signatures.

9.1.1 Regular worlds
The regular worlds used in Twelf [Sch00] are specified with sets of blocks. A block describes a
little piece of an LF context, and is declared in the LF signature as follows:

blockname : some {a1:τ1} . . . {an:τn} block {b1:τ ′1} . . . {bm:τ ′m}

A block declaration is well formed in the signature Σ if, by the definition of well-formed signa-
tures from Figure 4.3, · `Σ a1:τ1, . . . , an:τn ctx and a1:τ1, . . . , ai−1:τn `Σ b1:τ ′1, . . . , bm:τ ′m ctx.

The first list of LF variable bindings {a1:τ1} . . . {an:τn} that come after the some keyword
describe the types of concrete LF terms that must exist for the block to be well formed. The
second list of LF variable bindings represents the bindings that the block actually adds to the
LF context. The regular worlds of Twelf are specified with sets of block identifiers (block1 |
. . . | blockn). A set S of block identifiers and a Twelf signature Σ inductively define a world as
follows: the empty context belongs to every regular world, and if

∗ Ψ is a well-formed LF context in the current world,

∗ blockname : some {a1:τ1} . . . {an:τn} block {b1:τ ′1} . . . {bm:τ ′m} ∈ Σ is one of the blocks
in S, and

∗ there is a σ such that Ψ `Σ σ : a1:τ1, . . . , an:τn,

then Ψ, b1:στ ′1, . . . , bm:στ ′m is also a well-formed LF context in the current world. The closed
world, which contains only the empty context, is specified by the empty set of block identifiers.

One simple example of a regular world (previously discussed in Section 4.4.1) is one that
contains all contexts with just expression variables of LF type exp. This world can be described
with the block blockexp:

blockexp : some block {x:exp}
If we had a judgment natvar xn that associated every LF variable x:exp with some natural num-
ber n:nat, then in order to make sure that every expression variable was associated with some
natural number we would use the world described by this block:

blocknatvar : some {n:nat} block {x:exp} {nv :natvar xn}

The world described by the combination of blockexp and blocknatvar is one where every LF
variable x:exp is associated with at most one LF variable of type natvar xn. Assuming that there
are no constants of type natvar,2 this gives us a uniqueness property: if natvar xn and natvar xm,
then m = n.

predicate gen is a nonterminal, the predicate terminating is a terminal, and ev is the encoding of big-step evaluation
e ⇓ v from Figure 6.1. The language described is isomorphic to the set of λ-calculus expressions that terminate
under a call-by-value strategy, and membership in that set is undecidable.

2This is a property we can easily enforce with subordination, which was introduced in Section 4.1.3.
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9.1.2 Regular worlds from generative signatures
A block declaration blockname : some {a1:τ1} . . . {an:τn} block {b1:τ ′1} . . . {bm:τ ′m} can be de-
scribed by one rule in a generative signature:

blockname : ∀a1:τ1 . . . ∀an:τn. {∃b1:τ ′1 . . . bm:τ ′m.1}

Because a regular world is just a set of blocks, the generative signature corresponding to a regular
world contains one rule for each block in the regular worlds description. The world (blockexp |
blockvar) corresponds to the following generative signature:

nat : type,

. . . declare constants of type nat . . .
exp : type,

. . . declare constants of type exp . . .
blockexp : {∃x:exp.1},
blocknatvar : ∀n:nat. {∃x:exp.∃nv :natvar xn.1}

Call this regular world signature ΣRW . It is an extremely simple example of a generative signa-
ture – there are no terminals and no nonterminals – so the restriction operator has no effect. The
world described by (blockexp | blocknatvar) is identical to the set of LF contexts Ψ such that
(·; ·) ;ΣRW (Ψ; ·).

9.1.3 Regular worlds in substructural specifications
It is a simple generalization to replace the proposition 1 in the head of the generative block∗
rules above with less trivial positive SLS propositions. In this way, we can extend the language
of regular worlds to allow the introduction of ordered, mobile, and persistent SLS propositions as
well. For instance, the rule blockitem : ∀n. {itemn}, where item is a mobile predicate, describes
the world of contexts that take the form (·; x1:〈itemn1〉 eph, . . . , xk:〈itemnk〉 eph) for some
numbers n1 . . . nk. The world described by this generative signature is an invariant of a rule like

merge : ∀n.∀m.∀p. itemn • itemm • !(plusnmp)� {item p}

that combines two items, where plus is negative predicate defined with a deductive specification
as in Figure 6.21.

Such substructural generalizations of regular worlds are sufficient for the encoding of stores
in Linear LF [CP02] and stacks in Ordered LF [Pol01]. They also suffice to describe well-
formedness invariants in Felty and Momigliano’s sequential specifications [FM12]. However,
regular worlds are insufficient for the invariants discussed in the remainder of this chapter.

9.1.4 Generative versus consumptive signatures
Through the example of regular worlds, we can explain why worlds are defined as sets of process
states generated by a signature ΣGen and an initial state (Ψ; ∆):

{(Ψ′; ∆′′) | (Ψ; ∆) ;∗ΣGen
(Ψ′; ∆′) ∧ (Ψ′; ∆′)� = (Ψ′; ∆′′)}
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as opposed to the apparently symmetric case where worlds are sets of process states that can
generate a final process state (Ψ; ∆) under a signature ΣCons , which we will call a consumptive
signature:

{(Ψ′; ∆′′) | (Ψ′; ∆′) ;∗ΣGen
(Ψ; ∆) ∧ (Ψ′; ∆′)� = (Ψ′; ∆′′)}

Consumptive signatures look like generative signatures with the arrows turned around: we
consume well-formed contexts using rules like ∀e. eval e � {safe} and ∀f. safe • cont f �
{safe} instead of creating them with rules like ∀e. gen� {eval e} and ∀f. gen� {gen•cont f}.
One nice property consumptive signatures is that it opens up the possibility of working with
complete derivations rather than traces. That is, using a consumptive signature, we can talk
about the set of process states (Ψ; ∆) where Ψ; ∆ ` safe lax rather than the set of process states
where (·;x:〈gen〉 ord) ;∗ (Ψ; ∆).3

For purely context-free-grammar-like invariants, such as the PDA invariant from Section 4.4.1
and the SSOS invariant from Section 6.3, generative and consumptive signatures are effectively
equivalent. However, for generative signatures describing regular worlds, there is no notion of
turning the arrows around to get an appropriate consumptive signature. In particular, say we want
to treat

Ψgood = (x1:exp, nv 1:natvar x1 n1, x2:exp, nv 2:natvar x2 n2)

as a well-formed LF context but not treat

Ψbad = (x:exp, nv 1:natvar xn1, nv 2:natvar xn2)

as well-formed. It is trivial to use Twelf’s regular worlds or generative signatures to impose
this condition, but it does not seem possible to use consumptive signatures for this purpose.
There exists a substitution (x//x1, nv 1//nv 1, x//x2, nv 2//nv 2) from Ψgood to Ψbad ; therefore, by
variable substitution (Theorem 3.4), if there exists a derivation of Ψgood `Σ gen lax there also
exists a derivation of Ψbad `Σ gen lax . This is related to the issues of variable and pointer
equality discussed in Section 6.5.1.

The generative signatures used to describe state in Section 9.4 and destination-passing style in
Section 9.5 rely critically on the uniqueness properties that are provided by generative signatures
and not by consumptive signatures.

9.2 Invariants of ordered specifications
We already introduced generative invariants for ordered abstract machine SSOS specifications in
Section 6.3. In this section, we will extend that generative invariant to ordered abstract machines
with parallel evaluation and recoverable failure.

In Figure 9.1 we define a flat ordered abstract machine with parallel features (parallel evalua-
tion of the function and argument in an application, as discussed in Section 6.1.4 and Figure 6.3)
and recoverable failure (as presented in Section 6.5.4 and Figure 6.20). To make sure there

3As long as Ψ and ∆ contain only nonterminals – using consumptive signatures doesn’t obviate the need for the
restriction operation (Ψ; ∆)� or some equivalent restriction operation.
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eval: exp -> prop ord.
retn: exp -> prop ord.
cont: frame -> prop ord.
cont2: frame -> prop ord.
error: prop ord.
handle: exp -> prop ord.

;; Unit
ev/unit: eval unit >-> {retn unit}.

;; Sequential let
ev/let: eval (let E \x. E’ x) >-> {eval E * cont (let1 \x. E’ x)}.
ev/let1: retn V * cont (let1 \x. E’ x) >-> {eval (E’ V)}.

;; Functions and parallel application
ev/lam: eval (lam \x. E x) >-> {retn (lam \x. E x)}.
ev/app: eval (app E1 E2) >-> {eval E1 * eval E2 * cont2 app1}.
ev/app1: retn (lam \x. E x) * retn V2 * cont2 app1

>-> {eval (E V2)}.

;; Recoverable failure
ev/fail: eval fail >-> {error}.
ev/catch: eval (catch E1 E2) >-> {eval E1 * handle E2}.
ev/catcha: retn V * handle _ >-> {retn V}.
ev/catchb: error * handle E2 >-> {eval E2}.

ev/error: error * cont _ >-> {error}.
ev/errerr: error * error * cont2 _ >-> {error}.
ev/errret: error * retn _ * cont2 _ >-> {error}.
ev/reterr: retn _ * error * cont2 _ >-> {error}.

Figure 9.1: Ordered abstract machine with parallel evaluation and failure

is still an interesting sequential feature, we also introduce a let-expression pletx = e in e′q =
let peqλx.pe′q. The particular features are less important than the general setup, which effec-
tively represents all the specifications from Chapter 6 that used only ordered atomic propositions.

Our goal is to describe a generative signature that represents the well-formed process states
of the specification in Figure 9.1. What determines whether a process state is well formed? The
intended adequacy theorem was our guide in Section 6.3, and the intended progress theorem will
guide our hand in Section 9.3. An obvious minimal requirement is that every state ∆ such that
(x:〈eval〉 peq ord) ;∗ ∆ under the signature from Figure 9.1 must be well formed; otherwise
well-formedness won’t be invariant under evaluation! One option is therefore to make this cor-
respondence precise, and to have the well formed states be precisely the states that are reachable
in the process of evaluating syntactically valid expressions peq. That is, if (x:〈gen〉 ord) ;∗ ∆
under the generative signature and if ∆ contains no instances of gen, then there should be an ex-
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pression e such that (x:〈eval peq〉 ord) ;∗ ∆ under the signature from Figure 9.1. (Because gen
is the only nonterminal, we can express that ∆ contains no instances of gen with the restriction
operator, writing ∆�.)4

The analogues of the unary grammar productions, associated with the terminals eval e, retn v,
and error, are straightforward:

gen/eval: gen >-> {eval E}.
gen/retn: gen * !value V >-> {retn V}.
gen/error: gen >-> {error}.

As in Section 6.3, we use a deductively-defined judgment value v to stipulate that we only return
values. The process state (y:〈retn pe1 e2q〉 ord) is not well formed: the application expression
e1 e2 is not a value, and there is no e such that (x:〈eval peq〉 ord) ;∗ (y:〈retn pe1 e2q〉 ord) under
the signature from Figure 9.1.

There is a potential catch when we consider the rules for sequential continuations cont f and
parallel continuations cont2 f . We expect a sequential continuation frame to be preceded by a
single well-formed computation, and for a parallel continuation frame to be preceded by two
well-formed computations, suggesting these rules:

gen/cont: gen >-> {gen * cont F}.
gen/cont2: gen >-> {gen * gen * cont2 F}.

Even though gen/cont is exactly the rule for sequential continuations in Section 6.3, this ap-
proach conflicts with our guiding principle of reachability. Both parallel continuation frames
cont f and sequential continuation frames cont2 f are indexed by LF terms f of type frame, but
the parallel frame app1 cannot appear in a sequential continuation, nor can the sequential frame
(let1λx.e x) appear in a parallel frame.

This is fundamentally no more complicated than the restrictions we placed on the retn v
terminal. All expressions (LF variables of type exp) can appear in exp e propositions (and in
handle e propositions), but only some can appear in retn v frames. We describe that subset of
frames with the negative atomic proposition value v, which is deductively defined. Similarly,
only some frames can appear in cont f terminals, and only some frames can appear in cont2 f
terminals. The former subset can be expressed by a negative atomic proposition okf f , and the
latter by a negative atomic proposition okf2 f . Both of these are deductively defined. The full
specification of this generative invariant is shown in Figure 9.2; we will refer to this generative
signature as ΣGen9 .2 .

9.2.1 Inversion

Traditional inversion lemmas are a critical part of preservation properties for small-step opera-
tional semantics specifications. In traditional preservation theorems, we often start with a deriva-
tion of e1 e2 7→ e′1 e2 and another derivation of · ` e1 e2 : tp. An inversion lemma then proceeds
by case analysis on the structure of the derivation · ` e1 e2 : tp, and allows us to conclude that
· ` e1 : tp ′ ⇒ tp and that · ` e2 : tp ′ for some object-level type tp ′. In other words, an inversion

4We won’t discuss the proof of this property, but the proof is not difficult to reconstruct; it follows the same
contours as the proof of progress given in Chapter 10.
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value: exp -> prop.
value/unit: value unit.
value/lam: value (lam \x. E x).

okf: frame -> prop.
okf/let1: okf (let1 \x. E’ x).

okf2: frame -> prop.
okf2/app1: okf2 app1.

gen: prop ord.
gen/eval: gen >-> {eval E}.
gen/retn: gen * !value V >-> {retn V}.
gen/cont: gen * !okf F >-> {gen * cont F}.
gen/cont2: gen * !okf2 F >-> {gen * gen * cont2 F}.
gen/error: gen >-> {error}.
gen/handle: gen >-> {gen * handle E2}.

Figure 9.2: Generative invariant: well-formed process states

lemma allows us to take knowledge about a term’s structure and obtain information about the
structure of typing derivation.

Inversion on a generative signature is intuitively similar: we take information about the struc-
ture of a process state and use it to learn about the generative trace that formed that process state.
Concurrent equality (Section 4.3) is critical. None of the parts of the lemma below would hold
if we did not equate traces such as such as

(x′:〈gen〉 ord)

{x1, x2, x3} ← gen/cont2 f (x′ • okf2/app1)

{y1} ← gen/eval e1 x1

{y2} ← gen/eval e2 x2

(x1:〈eval e1〉 ord , x2:〈eval e2〉 ord , x3:〈cont2 f〉 ord)

and

(x′:〈gen〉 ord)

{x1, x2, x3} ← gen/cont2 f (x′ • okf2/app1)

{y2} ← gen/eval e2 x2

{y1} ← gen/eval e1 x1

(x1:〈eval e1〉 ord , x2:〈eval e2〉 ord , x3:〈cont2 f〉 ord)

by concurrent equality.
The action of an inversion lemma is to conclude, based on the structure of a generated process

state, something about the last step in the trace that generated it. This is less immediate than in-
version on derivations because concurrent traces can have many steps which can all equivalently

243



October 15, 2012
DRAFT

(x0:〈gen〉 ord)

( . . . , y:〈eval e〉 ord , . . . )

a trace always has the structure

(x0:〈gen〉 ord)

x′:〈gen〉 ord

( . . . , y:〈eval e〉 ord , . . . )

gen/
eval

Figure 9.3: Graphical representation of part 1 of the inversion lemma for ΣGen9 .2

be treated the last, such as the two gen/eval steps above. Another way of looking at the inversion
lemma, which emphasizes that generative traces act like rewriting rules, is shown in Figure 9.3.

Lemma (Inversion – Figure 9.2).
1. If T :: (x0:〈gen〉 ord) ;∗ΣGen9 .2

Θ{y:〈eval e〉 ord},5
then T = (T ′; {y} ← gen/eval e x′).

2. If T :: (x0:〈gen〉 ord) ;∗ΣGen9 .2
Θ{y:〈retn v〉 ord},

then T = (T ′; {y} ← gen/retn v (x′ • !N)),
where · ` N : value v true.6

3. If T :: (x0:〈gen〉 ord) ;∗ΣGen9 .2
Θ{y1:〈gen〉 ord , y2:〈cont f〉 ord},

then T = (T ′; {y1, y2} ← gen/cont f (x′ • !N)),
where · ` N : okf f true.

4. If T :: (x0:〈gen〉 ord) ;∗ΣGen9 .2
Θ{y1:〈gen〉 ord , y2:〈gen〉 ord , y3:〈cont2 f〉 ord},

then T = (T ′; {y1, y2, y3} ← gen/cont2 f (x′ • !N)),
where · ` N : okf2 f true.

5. If T :: (x0:〈gen〉 ord) ;∗ΣGen9 .2
Θ{y:〈error〉 ord},

then T = (T ′; {y} ← gen/error x′).

6. If T :: (x0:〈gen〉 ord) ;∗ΣGen9 .2
Θ{y1:〈gen〉 ord , y2:〈handle e〉 ord},

then T = (T ′; {y1, y2} ← gen/handle e (x′ • !N)).

In each instance above, T ′ :: (x0:〈gen〉 ord) ;∗ΣGen9 .2
Θ{x′:〈gen〉 ord}, where the variables x0

and x′ may or may not be the same. (They are the same iff T ′ = �.)
5Our notation for frames Θ and the tacking-on operation Θ{∆} are summarized in Appendix A.
6In this chapter, the signature associated with every deductive derivation (ΣGen9 .2 in this case) is clear from the

context and so we write · ` N : value v true instead of · `ΣGen9.2
N : value v true .
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Proof. Each part follows by induction and case analysis on the last steps of T . In each case, we
know that the trace cannot be empty, because the variable bindings y:〈eval e〉 ord , y:〈retn v〉 ord ,
y2:〈cont f〉 ord , y3:〈cont2 f〉 ord , y:〈error〉 ord , and y2:〈handle e〉 ord , respectively, appear in the
final process state but not the initial process state. Therefore, T = T ′′;S for some T ′′ and S.

There are two ways of formulating the proof of this inversion lemma. The specific formula-
tion does a great deal of explicit case analysis but is closer in style to the preservation lemmas.
We also give a more generic formulation of the proof which avoids much of this case analysis,
in large part by operating in terms of the input and output interfaces introduced in Section 4.3.

Specific formulation (Part 4)
Given (T ′′;S) :: (x0:〈gen〉 ord) ;∗ΣGen9 .2

Θ{y1:〈gen〉 ord , y2:〈gen〉 ord , y3:〈cont2 f〉 ord}, we
perform case analysis on S. We give two representative cases:

Case S = {z} ← gen/eval e x′′

We have that Θ{y1:〈gen〉 ord , y2:〈gen〉 ord , y3:〈cont2 f〉 ord} = Θ′{z:〈eval e〉 ord}. It
cannot be the case that z = y1, z = y2, or z = y3 – the propositions don’t match. There-
fore, we can informally describe the substructural context as a frame Θ2H with two holes
that are filled as Θ2H{y1:〈gen〉 ord , y2:〈gen〉 ord , y3:〈cont2 f〉 ord}{z:〈eval e〉 ord}. (We
haven’t actually introduced frames with two holes; the reasoning we do with two-hole
contexts here could also be done following the structure of the cut admissibility proof,
Theorem 3.6.)

If we call the induction hypothesis on T ′′, we get that

T ′′ = (x0:〈gen〉 ord)
T ′′′

Θ2H{x′:〈gen〉 ord}{x′′:〈gen〉 ord}
{y1, y2, y3} ← gen/cont2 f (x′ • !N)

Θ2H{y1:〈gen〉 ord , y2:〈gen〉 ord , y3:〈cont2 f〉 ord}{x′′:〈gen〉 ord}

The steps {y1, y2, y3} ← gen/cont2 f (x′ • !N) and {z} ← gen/eval e x′′ can be permuted,
so we let T ′ = T ′′′; {z} ← gen/eval e x′′ and have

T = (x0:〈gen〉 ord)
T ′′′

Θ2H{x′:〈gen〉 ord}{x′′:〈gen〉 ord}
{z} ← gen/eval e x′′

Θ2H{x′:〈gen〉 ord}{z:〈eval e〉 ord}
{y1, y2, y3} ← gen/cont2 f (x′ • !N)

Θ2H{y1:〈gen〉 ord , y2:〈gen〉 ord , y3:〈cont2 f〉 ord}{z:〈eval e〉 ord}

Case S = {z1, z2, z3} ← gen/cont2 f ′ (x′′ • !N ′)
If z1 = x1, z2 = x2, or z3 = x3, then the ordered structure of the context forces the rest of
the equalities to hold and we succeed immediately letting T ′ = T ′′, f = f ′, and N = N ′.

If z1 6= x1, z2 6= x2, and z3 6= x3, then we proceed by induction as in the gen/eval case
above.
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The only other possibilities allowed by the propositions associated with variables are that
z1 = x2, which is impossible because it would force z2 = x3 and therefore force gen to
equal cont2 f , and that z2 = x1, which is impossible because it would force z3 = x2 and
therefore force cont2 f ′ to equal gen.

Generic formulation Let Var be the set of relevant variables – {y} in parts 1, 2, and 5, {y1, y2}
in parts 3 and 6, and {y1, y2, y3} in part 4.

One possibility is that ∅ = S• ∩ Var . If so, it is always the case that ∅ = •S ∩ Var as
well, because Var contains no persistent atomic propositions or LF variables. By the induction
hypothesis we then get that T ′′ = T ′′′;S ′, where S ′ = {y} ← gen/eval e x′ in part 1, S ′ =
{y} ← gen/retn v (x′ • !N) in part 2, and so on. In each of the six parts, of course S ′• = Var ,
so ∅ = S ′• ∩ •S and (T ′′′;S ′;S) = (T ′′′;S;S ′), and so we can conclude letting T ′ = (T ′′;S).

If, on the other hand, S• ∩ Var is nonempty, we must show by case analysis that S• = Var
and that furthermore S is the step we were looking for. This is easy in parts 1, 2, and 5 where Var
is a singleton set: there is only one rule that can produce an atomic proposition of type eval e,
retn v, or error, respectively. In part 4, we observe that, if the variable bindings y1:〈gen〉 ord ,
y2:〈gen〉 ord , and y3:〈cont2 f〉 ord appear in order in the substructural context, there is no step
in the signature ΣGen9 .2 that has y1 among its output variables that does not also have y2 and y3

among its output variables, no step that has y2 among its output variables that does not also have
y1 and y3 among its output variables, and so on. (This is a rephrasing of the reasoning we did in
the gen/cont2 case of the proof above.) Parts 3 and 6 work by similar reasoning.

The inversion lemma can be intuitively connected with the idea that the grammar described
by a generative signature is unambiguous. This will not hold in general. If there was a rule
gen/redundant : gen � {gen} in ΣΣGen9 .2

, for instance, then the final step S could be {y1} ←
gen/redundant y′, and this would invalidate our inversion lemma for parts 3, 4, and 6. Con-
versely, if we tried to prove an inversion property about traces (x:〈gen〉 ord) ;∗ΣGen9 .2

Θ{y:〈gen〉 ord},
this property would again fail: V = {y}, and in the case where the last step S is driven by one
of the rules gen/cont, gen/cont2, or gen/handle, S• will be a strict superset of V .

The reason for preferring the generic formulation to the one based on more straightforward
case analysis is that the generic formulation is much more compact. The specific formulation in
its full elaboration would require enumerating 7 cases for each of the 6 inversion lemmas, leading
to proof whose size is in O(n2) where n is the number of rules in the generative signature. This
enormous proof does very little to capture the intuitive reasons why the steps we are interested
in can always be rotated to the end. A goal of this chapter to reason we will emphasize the
principles by which we can use to reason concisely about specifications.

9.2.2 Preservation
Theorem 9.2 (ΣGen9 .2 is a generative invariant). If T1 :: (x0:〈gen〉 ord) ;∗ΣGen9 .2

∆ and S ::
∆� ; ∆′ under the signature from Figure 9.1, then T2 :: (x0:〈gen〉 ord) ;∗ΣGen9 .2

∆′.

Again recalling the two-dimensional notation from Chapter 4, the statement of this theorem can
be illustrated as follows (dashed lines represent outputs of the theorem):
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(x0:〈gen〉 ord)

∗
ΣGen9 .2

∆

∆

(x0:〈gen〉 ord)

∗
ΣGen9 .2

∆′

∆′

Proof. By case analysis on S. As in the proofs of Theorem 4.7 and Theorem 6.6, we enumerate
the synthetic transitions possible under the signature in Figure 9.1, perform inversion on the
structure of T1, and then use the results of inversion to construct T2. We give three illustrative
cases corresponding to the fragment dealing with functions and parallel application.

Case {y} ← ev/lam (λx.e)x :: Θ{x:〈eval (lamλx.e)〉 ord}; Θ{y:〈retn (lamλx.e)〉 ord}

Applying inversion (Part 1) to T1, we have

T1 = (x0:〈gen〉 ord)
T ′

Θ{x′:〈gen〉 ord}
{x} ← gen/eval (lamλx.e)x′

Θ{x:〈eval (lamλx.e)〉 ord}

We can use T ′ to construct T2 as follows:

T2 = (x0:〈gen〉 ord)
T ′

Θ{x′:〈gen〉 ord}
{y} ← gen/retn (lamλx.e) (x′ • !(value/lam (λx.e)))

Θ{y:〈retn (lamλx.e)〉 ord}

Case {y1, y2, y3} ← ev/app e1 e2 x
:: Θ{x:〈eval (app e1 e2)〉 ord}

; Θ{y1:〈eval e1〉 ord , y2:〈eval e2〉 ord , y3:〈cont2 app1〉 ord}

Applying inversion (Part 1) to T1, we have

T1 = (x0:〈gen〉 ord)
T ′

Θ{x′:〈gen〉 ord}
{x} ← gen/eval (app e1 e2)x′

Θ{x:〈eval (app e1 e2)〉 ord}

We can use T ′ to construct T2 as follows:

T2 = (x0:〈gen〉 ord)
T ′

Θ{x′:〈gen〉 ord}
{y′1, y′2, y} ← gen/cont2 app1 (x′ • !okf2/app1)
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{y1} ← gen/eval e1 y
′
1

{y2} ← gen/eval e2 y
′
2

Θ{y1:〈eval e1〉 ord , y2:〈eval e2〉 ord , y3:〈cont2 app1〉 ord}

Case {y} ← ev/app1 (λx. e) v2 (x1 • x2 • x3)
:: Θ{x1:〈retn (lamλx. e)〉 ord , x2:〈retn v2〉 ord , x3:〈cont2 app1〉 ord}

; Θ{y:〈eval ([v2/x]e)〉 ord}

Applying inversion (Part 2, twice, and then Part 4) to T1, we have

T1 = (x0:〈gen〉 ord)
T ′

Θ{x′:〈gen〉 ord}
{x′1, x′2, x3} ← gen/cont2 app1 (x′ • !N)
{x1} ← gen/retn (lamλx.e) (x′1 • !N1)
{x2} ← gen/retn v2 (x′2 • !N2)

Θ{x1:〈retn (lamλx. e)〉 ord , x2:〈retn v2〉 ord , x3:〈cont2 app1〉 ord}

We can use T ′ to construct T2 as follows:

T2 = (x0:〈gen〉 ord)
T ′

Θ{x′:〈gen〉 ord}
{y} ← gen/eval ([v2/x]e)x′

Θ{y:〈eval ([v2/x]e)〉 ord}

The other cases, corresponding to the rules ev/unit, ev/fail, ev/catch, ev/catcha, ev/catchb,
ev/error, ev/errerr, ev/errret, and ev/reterr all proceed similarly by inversion and reconstruction.

Note that, in the case corresponding to the rule ev/app1, we obtained but did not use three
terms · ` N : okf2 app1 true, · ` N1 : value (lamλx.e) true, and · ` N2 : value v2 true. By
traditional inversion on the structure of a deductive derivation, we know that N = okf2/app1
and N1 = value/lam (λx.e), but that was also not necessary here.

9.3 From well-formed to well-typed states
In order to describe those expressions whose evaluations never get stuck, we introduce object
level types tp and define a typing judgment Γ ` e : tp. We encode object-level types as LF terms
classified by the LF type typ. The unit type p1q = unittp classifies units p〈〉q = unit, and the
function type ptp1 ⇒ tp2q = arr ptp1q ptp2q classifies lambda expressions.

In a syntax-directed type system, each syntactic construct is associated with a different typing
rule. These are the typing rules necessary for describing the language constructs in Figure 9.1:

Γ ` 〈〉 : 1

Γ, x:tp ′ ` e : tp

Γ ` λx.e : tp ′ ⇒ tp

Γ ` e1 : tp ′ ⇒ tp Γ ` e2 : tp ′

Γ ` e1 e2 : tp
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of: exp -> typ -> prop.

of/unit: of unit unittp.
of/lam: of (lam \x. E x) (arr Tp’ Tp)

<- (All x. of x Tp’ -> of (E x) Tp).
of/app: of (app E1 E2) Tp

<- of E1 (arr Tp’ Tp)
<- of E2 Tp’.

of/fail: of fail Tp.
of/catch: of (catch E1 E2) Tp

<- of E1 Tp
<- of E2 Tp.

off: frame -> typ -> typ -> prop.
off/let1: off (let1 \x. E’ x) Tp’ Tp

<- (All x. of x Tp’ -> of (E’ x) Tp).

off2: frame -> typ -> typ -> typ -> prop.
off2/app1: off2 app1 (arr Tp’ Tp) Tp’ Tp.

gen: typ -> prop ord.
gen/eval: gen Tp * !of E Tp >-> {eval E}.
gen/retn: gen Tp * !of V Tp * !value V >-> {retn V}.
gen/cont: gen Tp * !off F Tp’ Tp >-> {gen Tp’ * cont F}.
gen/cont2: gen Tp * !off2 F Tp1 Tp2 Tp

>-> {gen Tp1 * gen Tp2 * cont2 F}.
gen/error: gen Tp >-> {error}.
gen/handle: gen Tp * !of E2 Tp >-> {gen Tp * handle E2}.

Figure 9.4: Generative invariant: well-typed process states

Γ ` fail : tp

Γ ` e1 : tp Γ ` e2 : tp

Γ ` try e1 ow e2 : tp

We can adequately encode derivations of the judgment x1:tp1, . . . , xn:tpn ` e : tp as SLS deriva-
tions x1:exp, . . . , xn:exp; y1 : (of x1 ptp1q) pers , . . . , yn : (of x1 ptpnq) pers ` of peq ptpq under
the signature in Figure 9.3.

This typing judgment allows us to describe well-formed initial states, but it is not sufficient
to describe intermediate states. To this end, we describe typing rules for frames, refining the
negative predicates okf f and okf2 f from Figure 9.2. The SLS proposition describing well-
typed sequential frames is (off f ptp ′q ptpq). This proposition expresses that the frame f expects
a returned result with type tp ′ and produces a computation with type tp.7 The parallel version is
(off f ptp1q ptp2q ptpq), and expects two sub-computations with types tp1 and tp2, respectively,
in order to produce a computation of type tp. These judgments are given in Figure 9.4.

The generative rules in Figure 9.4 are our first use of an indexed nonterminal, gen ptpq, which

7The judgment we encode in SLS as (off f ptp′q ptpq) is written f : tp′ ⇒ tp in [Har12, Chapter 27].
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generates computations that, upon successful return, will produce values v such that · ` v : tp.

9.3.1 Inversion
The structure of inversion lemmas is entirely unchanged, except that it has to account for type
indices. We only state two cases of the inversion lemma, the one corresponding to gen/eval and
the one corresponding to gen/cont. These two cases suffice to set up the template that all other
cases follow.

Lemma (Inversion – Figure 9.2, partial).
1. If T :: (x0:〈gen tp0〉 ord) ;∗ΣGen9 .4

Θ{y:〈eval e〉 ord},
then T = (T ′; {y} ← gen/eval tp e (x′ • !N)),
where · ` N : of e tp true

2. If T :: (x0:〈gen tp0〉 ord) ;∗ΣGen9 .4
Θ{y1:〈gen tp ′〉 ord , y2:〈cont f〉 ord},

then T = (T ′; {y1, y2} ← gen/cont tp f tp ′ (x′ • !N)),
where · ` N : off f tp ′ tp true.

In each instance above, T ′ :: (x0:〈gen tp0〉 ord) ;∗ΣGen9 .4
Θ{x′:〈gen tp〉 ord}, where the vari-

ables x0 and x′ may or may not be the same. (They are the same iff T ′ = �, and if they are the
same that implies tp0 = tp.)

9.3.2 Preservation
Theorem 9.3 only differs from Theorem 9.2 because it mentions the type index. Each object-level
type tp0 describes a different world (that is, a different set of SLS process states), and evaluation
under the rules in Figure 9.1 always stays within the same world.

Theorem 9.3 (ΣGen9 .4 is a generative invariant). If T1 :: (x0:〈gen tp0〉 ord) ;∗ΣGen9 .4
∆ and

S :: ∆� ; ∆′ under the signature from Figure 9.1, then T2 :: (x0:〈gen tp0〉 ord) ;∗ΣGen9 .4
∆′.

(x0:〈gen tp0〉 ord)

∗
ΣGen9 .4

∆

∆

(x0:〈gen tp0〉 ord)

∗
ΣGen9 .4

∆′

∆′

In the proof of Theorem 9.2, we observed that the applicable inversion on the generative
trace gave us derivations like · ` N : okf2 app1 true. We did not need these side derivations to
complete the proof, but we noted that they were amenable to traditional inversion. Traditional
inversion will be critical in proving that the generative invariant described by ΣGen9 .4 is pre-
served. It is a solved problem to describe, prove, and mechanize traditional inversion lemmas on
deductive derivations; we merely point out when we are using a traditional inversion property in
the proof below.
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Proof. As always, the proof proceeds by enumeration, inversion, and reconstruction. We give
two representative cases:

Case {y} ← ev/app1 (λx. e) v2 (x1 • x2 • x2)
:: Θ{x1:〈retn (lamλx. e)〉 ord , x2:〈retn v2〉 ord , x3:〈cont2 app1〉 ord}

; Θ{y:〈eval ([v2/x]e)〉 ord}

Applying inversion to T1, we have

T1 = (x0:〈gen tp0〉 ord)
T ′

Θ{x′:〈gen tp〉 ord}
{x′1, x′2, x3} ← gen/cont2 tp app1 tp ′′ tp ′ (x′ • !N)

Θ{x′1:〈gen tp ′′〉 ord , x′2:〈gen tp ′〉 ord , x3:〈cont2 app1〉 ord}
{x1} ← gen/retn tp′′ (lamλx.e) (x′1 • !N1 • !Nv1)
{x2} ← gen/retn v2 (x′2 • !N2 • !Nv2)

Θ{x1:〈retn (lamλx. e)〉 ord , x2:〈retn v2〉 ord , x3:〈cont2 app1〉 ord}

where
• · ` N : off2 app1 tp ′′ tp ′ tp true.

By traditional inversion we know tp ′′ = arr tp ′ tp and N = off2/app1 tp ′ tp.
• · ` N1 : of (lamλx.e) arr tp ′ tp true.

By traditional inversion we know x:exp; dx : of x tp ′ pers ` N ′1 : of e tp true.
• · ` N2 : of v2 tp ′.

With these derivations, variable substitution (Theorem 3.4), and cut admissibility (Theo-
rem 3.6), we have a derivation of · ` JN2/dxK([v2/x]N ′1) : of ([v2/x]e) tp true.8 We can
therefore use T ′ to construct T2 as follows:

T2 = (x0:〈gen tp0〉 ord)
T ′

Θ{x′:〈gen tp〉 ord}
{y} ← gen/eval tp ([v2/x]e) (x′ • !(JN2/dxK([v2/x]N ′1)))

Θ{y:〈eval ([v2/x]e)〉 ord}

Case {y1, y2} ← ev/catch (λx. e) v2 x
:: Θ{x:〈eval (catch e1 e2)〉 ord}; Θ{y1:〈eval e1〉 ord , y2:〈handle e2〉 ord}]

Applying inversion to T1, we have

T1 = (x0:〈gen tp0〉 ord)
T ′

Θ{x′:〈gen tp〉 ord}
{x} ← gen/eval tp (catch e1 e2) (x′ • !N)

Θ{x:〈eval (catch e1 e2)〉 ord}

8We know by subordination that x is not free in tp, so [v2/x]tp = tp.
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where · ` N : of (catch e1 e2) tp.

By traditional inversion on N we know · ` N1 : of e1 tp true and · ` N2 : of e2 tp true.
We can therefore use T ′ to construct T2 as follows:

T1 = (x0:〈gen tp0〉 ord)
T ′

Θ{x′:〈gen tp〉 ord}
{y′1, y2} ← gen/handle tp e2 (x′ • !N2)
{y1} ← gen/eval tp e1 (y′1 • !N1)

Θ{y1:〈eval e1〉 ord , y2:〈handle e2〉 ord}

The other cases follow the same pattern.

Dealing with type preservation is, in an sense, no more difficult than dealing with well-
formedness invariants. Theorem 9.3 furthermore follows the contours of a standard progress and
preservation proof for an abstract machine like Harper’s K{nat⇀} [Har12, Chapter 27]. Unlike
the on-paper formalism used by Harper, the addition of parallel evaluation in our specification
does not further complicate the statement or the proof of the preservation theorem.

9.4 State
Ambient state, encoded in mobile and persistent propositions, was used to describe mutable
storage in Section 6.5.1, call-by-need evaluation in Section 6.5.2, and the environment semantics
in Section 6.5.3. The technology needed to describe generative invariants for each of these
specifications is similar. We will consider the extension of our program from Figure 9.1 with
the semantics of mutable storage from Figure 6.14. This specification adds a mobile atomic
proposition cell l v, which the generative signature will treat as a new terminal.

The intuition behind mutable cells is that they exist in tandem with locations l of LF type
mutable loc, giving the non-control part of a process state the following general form:

(l1:mutable loc, . . . , ln:mutable loc; 〈cell l1 v1〉 eph, . . . , 〈cell ln vn〉 eph, . . .)

Naively, we might attempt to describe such process states with the block-like rule gen/cell/bad :
∀v. !value v � {∃l.cell l v}. The problem with such a specification is that it makes cells unable
to refer to themselves, a situation that can certainly occur. A canonical example, using back-
patching to implement recursion, is traced out in Figure 9.4, which describes a trace classified
by:

(·; x0:〈eval plet f = (ref λx.〈〉) in letx = (f := λx.(!f)x) in eq〉 ord) ;∗

(l1:mutable loc; y2:〈cell l1 (lamλx. app (get (loc l1))x)〉 eph, x17:〈eval [(loc l1)/f, unit/x]peq)〉 ord)

The name of this problem is parameter dependency – the term v in gen/cell/bad has to be
instantiated before the parameter l is introduced. As a result, the trace in Figure 9.4 includes a
step

{x16, y2} ← ev/set2 . . . (x15 • x14 • y1)
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ofcell: mutable_loc -> typ -> prop pers.
gencell: mutable_loc -> prop lin.

value/loc: value (loc L).

of/loc: of (loc L) (reftp Tp)
<- ofcell L Tp.

of/ref: of (ref E) (reftp Tp)
<- of E Tp.

of/get: of (get E) Tp
<- of E (reftp Tp).

of/set: of (set E1 E2) unittp
<- of E1 (reftp Tp)
<- of E2 Tp.

off/ref1: off ref1 Tp (reftp Tp).
off/get1: off get1 (reftp Tp) Tp.
off/set1: off (set1 E) (reftp Tp) unittp

<- of E Tp.
off/set2: off (set2 L) Tp unittp

<- ofcell L Tp.

gencell/promise: {Exists l. !ofcell l Tp * $gencell l}.
gencell/fulfill: $gencell L * !ofcell L Tp * !of V Tp * !value V

>-> {$cell L V}.

Figure 9.6: Generative invariant: well-typed mutable storage

that transitions from a state that can be described by Figure 9.2 extended with gen/cell/bad to a
state that cannot be described by this signature. This means that gen/cell/bad cannot be the basis
of a generative invariant: it’s not invariant!

The solution is to create cells in two steps. The first rule, a promise rule, creates the location
l and associates a mobile nonterminal gencell with that location. A second fulfill rule consumes
that nonterminal and creates the actual mutable cell. Because gencell is a mobile nonterminal,
the promise must be fulfilled in order for the final state to pass through the restriction operation.
As we have already seen, there is not much of a technical difference between well-formedness
invariants and well-typedness invariants; Figure 9.6 describes a generative signature that captures
type information. This specification introduces two nonterminals. The first is the aforementioned
mobile nonterminal gencell l, representing the promise to eventually create a cell corresponding
to the location l. The second is a persistent nonterminal ofcell l tp. The collection of ofcell propo-
sitions introduced by a generative trace collectively plays the role of a store typing in [Pie02,
Chapter 13] or a signature in [Har12, Chapter 35]. This promise-then-fulfill pattern appears to
be an significant one, and it can be described quite naturally in generative signatures, despite be-
ing absent from work on regular-worlds-based reasoning about LF and Linear LF specifications.
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9.4.1 Inversion
When we add mutable state, we must significantly generalize the statement of inversion lemmas.
Derivations and expressions now exist in a world with arbitrary locations l:mutable loc that are
paired with persistent propositions ofcell l tp.9

Lemma (Inversion – Figure 9.6, partial).
1. If T :: (·;x0:〈gen tp0〉 ord) ;∗ΣGen9 .6

(Ψ; Θ{y:〈eval e〉 ord}),
then T = (T ′; {y} ← gen/eval tp e (x′ • !N)),
where Ψ; ∆ ` N : of e tp true,
T ′ :: (·;x0:〈gen tp0〉 ord) ;∗ΣGen9 .6

(Ψ′; Θ{x′:〈gen tp〉 ord}),
and ∆ is the persistent part of Θ{x′:〈gen tp〉 ord}.

2. If T :: (·;x0:〈gen tp0〉 ord) ;∗ΣGen9 .6
(Ψ; Θ{y1:〈gen tp ′〉 ord , y2:〈cont f〉 ord}),

then T = (T ′; {y1, y2} ← gen/cont tp f tp ′ (x′ • !N)),
where Ψ; ∆ ` N : off f tp ′ tp true,
T ′ :: (·;x0:〈gen tp0〉 ord) ;∗ΣGen9 .6

(Ψ′; Θ{x′:〈gen tp〉 ord}),
and ∆ is the persistent part of Θ{x′:〈gen tp〉 ord}.

3. If T :: (·;x0:〈gen tp0〉 ord) ;∗ΣGen9 .6
(Ψ; Θ{y:〈cell l v〉 ord}),

then T = (T ′; {y} ← gencell/fulfill l tp v (x′ • xt • !N • !Nv)),
where xt:〈ofcell l tp〉 pers ∈ ∆, Ψ; ∆ ` N : of v tp true, Ψ; ∆ ` Nv : value v true,
T ′ :: (·;x0:〈gen tp0〉 ord) ;∗ΣGen9 .6

(Ψ′; Θ{x′:〈gencell l〉 eph}),
and ∆ is the persistent part of Θ{x′:〈gencell l〉 eph}.

Despite complicating the statement of inversion theorems, the addition of mutable state does
nothing to change the structure of these theorems. The new inversion lemma (part 3 above)
follows the pattern established in Section 9.2.1.

9.4.2 Uniqueness
To prove that our generative invariant for mutable storage is maintained, we need one property
besides inversion; we’ll refer to it as the unique index property. This is the property that, under the
generative signature described by ΣGen9 .6 , locations always map uniquely to persistent positive
propositions xt:ofcell l tp.

Lemma (Unique indices of ΣGen9 .6 ).
1. If T :: (·;x0:〈gen tp0〉 ord) ;∗ΣGen9 .6

(Ψ; ∆),
x:〈ofcell l tp〉 pers ∈ ∆,
and y:〈ofcell l tp ′〉 pers ∈ ∆,
then x = y and tp = tp ′.

Proof. Induction and case analysis on the last steps of the trace T .

9This purely persistent world fits the pattern of regular worlds. As such, it can be described either with the single
rule ∀tp. {∃l. ofcell l tp} or with the equivalent block some tp:typ block l:mutable loc, x : 〈ofcell l tp〉 pers.
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9.4.3 Preservation
As it was with inversion, the statement of preservation is substantially altered by the addition of
locations and mutable state, even though the structure of the proof is not. In particular, because
ofcell is a persistent nonterminal, we have to expressly represent the fact that the restriction
operator (Ψ; ∆)� will modify the context ∆ by erasing the store typing.

Theorem 9.4 (ΣGen9 .6 is a generative invariant). If T1 :: (·;x0:〈gen tp0〉 ord) ;∗ΣGen9 .6
(Ψ; ∆)

and S :: (Ψ; ∆)� ; (Ψ′; ∆′) under the combined signature from Figure 9.1 and Figure 6.14,
then (Ψ′; ∆′) = (Ψ′; ∆′′)� for some ∆′′ such that T2 :: (·;x0:〈gen tp0〉 ord) ;∗ΣGen9 .6

(Ψ′; ∆′′).

(·; x0:〈gen tp0〉 ord)

∗
ΣGen9 .6

(Ψ; ∆)

(Ψ; ∆)�

(·; x0:〈gen tp0〉 ord)

∗
ΣGen9 .6

(Ψ′; ∆′′)

(Ψ′; ∆′)

Proof. As always, the proof proceeds by enumeration, inversion, and reconstruction. The only
interesting cases are the three that actually manipulate state, corresponding to ev/ref1, ev/get1,
and ev/set2. Recall these three rules from Figure 6.14:

ev/ref1: retn V * cont ref1
>-> {Exists l. $cell l V * retn (loc l)}.

ev/get1: retn (loc L) * cont get1 * $cell L V
>-> {retn V * $cell L V}.

ev/set2: retn V2 * cont (set2 L) * $cell L _
>-> {retn unit * $cell L V2}.

Reasoning about the last two cases is similar, so we only give the cases for ev/ref and ev/get1
below.

Case {l, y1, y2} ← ev/ref1 v (x1 • x2)
:: (Ψ; Θ{x1:〈retn v〉 ord , x2:〈cont ref1〉 ord})

; (Ψ, l:mutable loc; Θ{y1:〈cell l v〉 eph, y2:〈retn (loc l)〉 ord})
T1 :: (·; x0:〈gen tp0〉 ord) ;∗ (Ψ; Θ′{x1:〈retn v〉 ord , x2:〈cont ref1〉 ord}) for some Θ′

such that, for all ∆, (Ψ; Θ′{∆})� = (Ψ; Θ{∆�}). Applying inversion to T1, we have

T1 = (·; x0:〈gen tp0〉 ord)
T ′

(Ψ; Θ′{x′:〈gen tp〉 ord})
{x′1, x2} ← gen/cont tp ref1 tp ′ (x′ • !N)

(Ψ; Θ′{x′1:〈gen tp ′〉 ord , x2:〈cont ref1〉 ord})
{x1} ← gen/retn v (x′1 • !N1 • !Nv1)

(Ψ; Θ′{x1:〈retn v〉 ord , x2:〈cont ref1〉 ord})

where ∆ contains the persistent propositions from Θ′ and where
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• Ψ; ∆ ` N : off ref1 tp ′ tp true. By traditional inversion we know tp = reftp tp ′ and
N = off/ref1 tp ′.
• Ψ; ∆ ` N1 : of v tp′ true.
• Ψ; ∆ ` Nv1 : value v true.

We can use T ′ to construct T2 as follows:

T2 = (·; x0:〈gen tp0〉 ord)
T ′

(Ψ; Θ′{x′:〈gen (reftp tp ′)〉 ord})
{l, z, y′1} ← gencell/promise tp ′

{y1} ← gencell/fulfill l tp ′ v (y′1 • z • !N1 • !Nv1)
(Ψ, l:mutable loc;

Θ′{z:〈ofcell l tp ′〉 pers , y1:〈cell l v〉 eph, x′:〈gen (ref tp ′)〉 ord})
{y2} ← gen/retn (reftp tp ′) (loc l) (x′ • !(of/loc l tp ′ z) • !(value/loc l))

(Ψ, l:mutable loc;
Θ′{z:〈ofcell l tp ′〉 pers , y1:〈cell l v〉 eph, x′:〈retn (loc l)〉 ord})

Restriction removes the persistent nonterminal z:〈ofcell l tp ′〉 pers from the context, so the
restriction of T2’s output is (Ψ, l:mutable loc; Θ{y1:〈cell l v〉 eph, y2:〈retn (loc l)〉 ord})
as required.

Case {y1, y2} ← ev/get1 l v (x1 • x2 • x3)
:: (Ψ; Θ{x1:〈retn (loc l)〉 ord , x2:〈cont get1〉 ord , x3:〈cell l v〉 eph})

; (Ψ; Θ{y1:〈retn v〉 ord , y2:〈cell l v〉 eph})

T1 :: (·;x0:〈gen tp0〉 ord)
;∗ (Ψ; Θ′{x1:〈retn (loc l)〉 ord , x2:〈cont get1〉 ord , x3:〈cell l v〉 eph})

for some Θ′ such that, for all ∆, (Ψ; Θ′{∆})� = (Ψ; Θ{∆�}). Applying inversion to T1,
we have

T1 = (·; x0:〈gen tp0〉 ord)
T ′

(Ψ; Θ′{x′:〈gen tp〉 ord , x′3:〈gencell l〉 eph})
{x3} ← gencell/fulfill l tp ′ v (x′3 • z1 • !N3 • !Nv3)

(Ψ; Θ′{x′:〈gen tp〉 ord , x3:〈cell l v〉 eph})
{x′1, x2} ← gen/cont tp get1 tp ′′ (x′ • !N2)
{x1} ← gen/retn tp ′′ (loc l) (x′1 • !N1 • !Nv1)

(Ψ; Θ{x1:〈retn (loc l)〉 ord , x2:〈cont get1〉 ord , x2:〈cell l v〉 eph})

where ∆ contains the persistent propositions from Θ′ and where
• Ψ; ∆ ` N2 : off get1 tp ′′ tp true. By traditional inversion we know tp ′′ = reftp tp

and N2 = off/get1 tp.
• Ψ; ∆ ` N1 : of (loc l) (reftp tp) true. By traditional inversion we know N1 =

of/loc l tp x′′1 where x′′1:〈ofcell l tp〉 pers ∈ ∆.
• x′3:〈ofcell l tp ′〉 pers ∈ ∆.
• Ψ; ∆ ` N3 : of v tp ′ true.
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gencount/finalize: $gencount N >-> {$counter (s N)}.

gencell/promise: $gencount N
>-> {Exists l.

!ofcell l Tp * $gencell l N * $gencount (s N)}.

gencell/fulfill: $gencell L N * !ofcell L Tp * !of V Tp * !value V
>-> {$cell L N V}.

Figure 9.7: Two generative invariants for counting invariants

• Ψ; ∆ ` N3v : value v true.
By the uniqueness lemma, we have that x′3 = x′′1 and tp ′ = tp. Therefore, we can use T ′

to construct T2 as follows:

T1 = (·; x0:〈gen tp0〉 ord)
T ′

(Ψ; Θ′{x′:〈gen tp〉 ord , x′3:〈gencell l〉 eph})
{y2} ← gencell/fulfill l tp v (x′3 • z1 • !N3 • !Nv3)

(Ψ; Θ′{x′:〈gen tp〉 ord , y2:〈cell l v〉 eph})
{y1} ← gen/retn tp v (x′ • !N3 • !Nv3)

(Ψ; Θ′{y1:〈retn v〉 ord , y2:〈cell l v〉 eph})

(Ψ; Θ{y1:〈retn (loc l), y2:〈cell l v〉 eph〉 ord}) is the restriction of T2’s output, as required.

The other cases, notably ev/set2, follow the same pattern.

9.4.4 Revisiting pointer inequality

As we discussed in Section 6.5.1, the fact that SLS variables cannot be directly checked for
inequality complicates the representation of languages that can check for the inequality of loca-
tions. One way of circumventing this shortcoming is by keeping a runtime counter in the form of
an ephemeral atomic proposition countn that counts the number of currently allocated cells; the
rule ev/ref1 that allocates a new cell must be modified to access and increment this counter and
to attach the counter’s value to the new cell. Inequality of those natural number tags can then be
used as a proxy for inequality of locations.

A generative signature like the one in Figure 9.7 could be used to represent the invariant
that each location and each cell is associated with a unique natural number. The techniques
described in this chapter should therefore be sufficient to describe generative invariants of SSOS
specifications that implement pointer inequality in this way.

258



October 15, 2012
DRAFT

gen: typ -> dest -> prop lin.

gen/dest: {Exists d:dest. 1}.
gen/eval: $gen T D * !of E T >-> {$eval E D}.
gen/retn: $gen T D * !of V T * !value V >-> {$retn V D}.
gen/cont: $gen T D * !off F T’ T

>-> {Exists d’. gen T’ d’ * $cont F d’ D}.

Figure 9.8: Generative invariant: destination-passing (“obvious” formulation)

9.5 Destination-passing
Destination-passing style specifications, as discussed in Chapter 7, are not a focus of this disser-
tation, but they deserve mention for two reasons. First, they are of paramount importance in the
context of the logical framework CLF, a framework that lacks SLS’s notions of order. Second,
the work of Cervesato and Sans [CS13] is the most closely related work on describing the types
of progress and preservation properties for SSOS-like specifications; their work closely resem-
bles a destination-passing specification. As such, the preservation property given in this section
can be viewed an encoding of the proof by Cervesato and Sans in SLS.

In this section, we will work with an operational semantics derived from the signature given
in Figure 7.5 (sequential evaluation of function application) in Chapter 7. To use sequential
application instead of parallel evaluation of function application, we will need to give different
typing rules for frames:

off/app1: off app1 Tp (app1 E) (arr Tp’ Tp) Tp
<- of E Tp’.

off/app2: off (app2 \x. E x) Tp’ Tp
<- (All x. of x Tp’ -> of (E x) Tp).

Other than this change, our deductive typing rules stay the same.
When we move from ordered abstract machines to destination-passing style, the most natural

adaptation of generative invariants is arguably the one given in Figure 9.8. In that figure, the core
nonterminal is the mobile proposition gen tp d. The rule gen/dest, which creates destinations
freely, is necessary, as we can see from the following sequence of process states:

(d0:dest; x1:〈eval p(λx.e) e2q d0〉 eph) ;
(d0:dest, d1:dest; x2:〈eval p(λx.e)q d1〉 eph, x3:〈cont (app1 pe2q) d1 d0〉 eph) ;
(d0:dest, d1:dest; x4:〈retn p(λx.e)q d1〉 eph, x3:〈cont (app1 pe2q) d1 d0〉 eph) ;

(d0:dest, d1:dest, d2:dest; x5:〈eval pe2q d2〉 eph, x6:〈cont (app2 pλx.eq) d2 d0〉 eph) ; . . .

In the final state, d1 is isolated, no longer mentioned anywhere else in the process state, so
gen/dest must be used in the generative trace showing that the last state above is well-typed.

We will not use the form described in Figure 9.8 in this chapter, however. Instead, we will
prefer the presentation in Figure 9.9. There are two reasons for this. First and foremost, this
formulation meshes better with the promise-then-fulfill pattern that was necessary for state in
Figure 9.6 and that is also necessary for continuations in Section 9.6 below. As a secondary
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gen: typ -> dest -> prop lin.
gendest: dest -> prop lin.

dest/promise: {Exists d’. $gendest d’ D}.
dest/unused: $gendest D’ D >-> {1}

gen/eval: $gen Tp D * !of E Tp >-> {$eval E D}.
gen/retn: $gen Tp D * !of V Tp * !value V >-> {$retn V D}.
gen/cont: $gen Tp D * !off F Tp’ Tp * $gendest D’ D

>-> {$gen Tp’ D’ * $cont F D’ D}.

Figure 9.9: Generative invariant: destination-passing (modified formulation)

consideration, using the first formulation would require us to significantly change the structure
of our inversion lemmas. In previous inversion lemmas, proving that gen/cont could always
be rotated to the end of a generative trace was simple, because it introduced no LF variables
or persistent nonterminals. The gen/cont rule in Figure 9.8 does introduce an LF variable d′,
invalidating the principle used in Section 9.2.1.

The dest/promise run in Figure 9.9 is interesting in that it requires each destination d′ to
be created along with foreknowledge of the destination, d, that the destination d′ will return to.
This effectively forces all the destinations into a tree structure from the moment of their creation
onwards, a point that will become important when we modify Figure 9.9 to account for persistent
destinations and first-class continuations. The root of this tree is the destination d0 that already
exists in the initial process state (d0:dest;x0:〈gen tp0 d0〉 ord).

9.5.1 Uniqueness and index sets
One consequence of the way we use the promise-then-fulfill pattern in this specification is that
our unique index property becomes conceptually prior to our inversion lemma.

Lemma (Unique indices of ΣGen9 .9 ).
1. If T :: (d0:dest;x0:〈gen tp0 d0〉 ord) ;∗ΣGen9 .9

(Ψ; ∆),
x:〈gendest d d1〉 eph ∈ ∆, and y:〈gendest d d2〉 eph ∈ ∆,
then x = y and d1 = d2.

2. If T :: (d0:dest;x0:〈gen tp0 d0〉 ord) ;∗ΣGen9 .9
(Ψ; ∆),

x:〈gendest d d1〉 eph ∈ ∆, and y:〈gen tp d〉 eph ∈ ∆,
then there is a contradiction.

3. If T :: (d0:dest;x0:〈gen tp0 d0〉 ord) ;∗ΣGen9 .9
(Ψ; ∆),

x:〈gendest d d1〉 eph ∈ ∆, and y:〈cont f d d′〉 eph ∈ ∆,
then there is a contradiction.

4. If T :: (d0:dest;x0:〈gen tp0 d0〉 ord) ;∗ΣGen9 .9
(Ψ; ∆),

x:〈gen tp1 d〉 eph ∈ ∆, and y:〈gen tp2 d〉 eph ∈ ∆,
then x = y and tp1 = tp2.

260



October 15, 2012
DRAFT

5. If T :: (d0:dest;x0:〈gen tp0 d0〉 ord) ;∗ΣGen9 .9
(Ψ; ∆),

x:〈cont f1 d d1〉 eph ∈ ∆, and y:〈cont f2 d d2〉 eph ∈ ∆,
then x = y, f1 = f2, and d1 = d2.

Proof. Induction and case analysis on last steps of the trace T ; each part uses the previous parts
(parts 2 and 3 use part 1, and parts 4 and 5 use parts 2 and 3).

This lemma is a lengthy way of expressing what is ultimately a very simple property: that
the second position of gendest is a unique index and that it passes on that unique indexing to the
second position of gen and the second position of cont.

Definition 9.5. A set S is a unique index set under a generative signature Σ and an initial state
(Ψ; ∆) if, whenever
∗ a/i ∈ S,
∗ b/j ∈ S,
∗ (Ψ; ∆) ;∗Σ (Ψ′; ∆′),
∗ x:〈a t1 . . . tn〉 lvl ∈ ∆′, and
∗ y:〈b s1 . . . sm〉 lvl ′ ∈ ∆′,

it is the case that ti = sj implies x = y. Of course, if x = y, that in turn implies that a = b,
i = j, n = m, tk = sk for 1 ≤ k ≤ n, and lvl = lvl ′.

The complicated lemma above can then be captured by the dramatically more concise state-
ment: {gendest/1, gen/2} and {gendest/1, cont/2} are both unique index sets under the signa-
ture ΣGen9 .9 and the initial state (d0:dest;x0:〈gen tp0 d0〉 ord). In fact, we can extend the first
unique index set to {gendest/1, gen/2, eval/2, retn/2}. Stating that {gendest/1, gen/2} was a
unique index property previously required 3 distinct statements, and it would take 10 distinct
statements to express that {gendest/1, gen/2, eval/2, retn/2} is a unique index property.10 The
unique index property for cells (Section 9.4.2) can be rephrased by saying that {ofcell/1} is a
unique index set; {gencell/1, cell/1} is also a unique index set in that specification.

It’s also possible for unique index sets to be simply (and, presumably, mechanically) checked.
This amounts to a very simple preservation property.

9.5.2 Inversion

Lemma (Inversion – Figure 9.9).
1. If T :: (d0:dest; x0:〈gen tp0 d0〉 eph) ;∗ΣGen9 .9

(Ψ; Θ{y:〈eval e d〉 eph}),
then T = (T ′; {y} ← gen/eval tp d e (x′ • !N)),
where Ψ; ∆ ` N : of e tp true,
T ′ :: (d0:dest; x0:〈gen tp0 d0〉 eph) ;∗ΣGen9 .9

(Ψ; Θ{x′:〈gen tp d〉 eph}),
and ∆ is the persistent part of Θ{x′:〈gen tp d〉 eph}.

10Four positive statements (similar to parts 1, 4, and 5 of the lemma above) along
(

4
2

)
= 6 negative ones (similar

to parts 3 and 4 of the lemma above).
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2. If T :: (d0:dest; x0:〈gen tp0 d0〉 eph) ;∗ΣGen9 .9
(Ψ; Θ{y:〈retn v d〉 eph}),

then T = (T ′; {y} ← gen/retn tp d v (x′ • !N • !Nv)),
where Ψ; ∆ ` N : of e tp true, Ψ; ∆ ` Nv : value v true,
T ′ :: (d0:dest; x0:〈gen tp0 d0〉 eph) ;∗ΣGen9 .9

(Ψ; Θ{x′:〈gen tp d〉 eph}),
and ∆ is the persistent part of Θ{x′:〈gen tp d〉 eph}.

3. If T :: (d0:dest; x0:〈gen tp0 d0〉 eph)
;∗ΣGen9 .9

(Ψ; Θ{y1:〈gen tp ′ d′〉 eph, y2:〈cont f d′ d〉 eph}),

then T = (T ′; {y1, y2} ← gen/cont tp d f tp ′ d′ (x′ • !N • z)),
where Ψ; ∆ ` N : off e tp ′ tp true,
T ′ :: (d0:dest; x0:〈gen tp0 d0〉 eph)

;∗ΣGen9 .9
(Ψ; Θ{x′:〈gen tp d〉 eph, z:〈gendest d′ d〉 eph}),

and ∆ is the persistent part of Θ{x′:〈gen tp d〉 eph, z:〈gendest d′ d〉 eph}.

Proof. As with other inversion lemmas, each case follows by induction and case analysis on the
last steps of T . The trace cannot be empty, so T = T ′′;S for some T ′′ and S, and we let Var be
the set of relevant variables {y} in parts 1 and 2, and {y1, y2} in part 3.

If ∅ = S• ∩ Var , the proof proceeds by induction as it did in Section 9.2.1.
If S• ∩ Var is nonempty, then we must again show by case analysis that S• = Var and that

furthermore S is the step we were looking for. As before, this is easy for the unary grammar
productions where Var is a singleton set: there is only one rule that can produce an atomic
proposition eval e d or retn v d.

When Var is not a singleton (which only happens in part 3 for this lemma), we must use the
unique index property to reason that if there is any overlap, that overlap must be total.

∗ Say S = {y1, y
′′
2} ← gen/cont tp d′′ f ′′ tp ′ d′ (x′ • !N • z).

Then the final state contains y2:〈cont f d′ d〉 eph and y′′2 :〈cont f ′′ d′ d′′〉 eph. The shared d′

and the unique index property ensures that y2 = y′′2 , f = f ′′, and d = d′′.

∗ Say S = {y′′1 , y2} ← gen/cont tp d f tp ′′′ d′ (x′ • !N • z).
Then the final state contains y1:〈gen tp ′ d′〉 eph and y′′1 :〈gen tp ′′′ d′〉 eph. The shared d′ and
the unique index property ensures that y1 = y′′1 and tp ′ = tp ′′′.

Therefore, S = {y1, y2} ← gen/cont tp d f tp ′ d′ (x′ • !N • z).

9.5.3 Preservation

As we once again have no persistent nonterminals, we can return to the simpler form of the
preservation theorem used in Theorem 9.2 and Theorem 9.3 (compared to the more complex
formulation needed for Theorem 9.4).

Theorem 9.6 (ΣGen9 .9 is a generative invariant). If T1 :: (d0:dest;x0:〈gen tp0 d0〉 eph) ;∗ΣGen9 .9

(Ψ; ∆) and there is a step S :: (Ψ; ∆)� ; (Ψ′; ∆′) under the signature from Figure 7.5, then
T2 :: (d0:dest;x0:〈gen tp0 d0〉 ord) ;∗ΣGen9 .9

(Ψ′; ∆′).
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(d0:dest; x0:〈gen tp0 d0〉 eph)

∗
ΣGen9 .9

(Ψ; ∆)

(Ψ; ∆)

(d0:dest; x0:〈gen tp0 d0〉 eph)

∗
ΣGen9 .9

(Ψ′; ∆′)

(Ψ′; ∆′)

Proof. As usual, we enumerate the synthetic transitions possible under the signature in Fig-
ure 7.5, perform inversion on the structure of T1, and then use the results of inversion to construct
T2. We give one illustrative case.

Case {d2, y1, y2} ← ev/app1 (λx.e) d1 e2 d (x1 • x2)
:: (Ψ; Θ{x1:〈retn (lamλx.e) d1〉 eph, x2:〈cont (app1 e2) d1 d〉 eph})

; (Ψ, d2:dest; Θ{y1:〈eval e2 d2〉 eph, y2:〈cont (app2λx.e) d2 d〉 eph})

Applying inversion (Part 2, then Part 3) to T1, we have

T1 = (d0:dest; x0:〈gen tp0 d0〉 eph)
T ′

(Ψ; Θ{x′:〈gen tp d〉 eph, z1:〈gendest d1 d〉 eph})
{x′1, x2} ← gen/cont tp d (app1 e2) tp ′ d1 (x′ • !N2 • z1)

(Ψ; Θ{x′1:〈gen tp ′ d1〉 eph, x2:〈cont (app1 e2) d1 d〉 eph})
{x1} ← gen/retn tp ′ d1 v (x′1 • !N1 • !Nv1)

(Ψ; Θ{x1:〈retn (lamλx.e) d1〉 eph, x2:〈cont (app1 e2) d1 d〉 eph})

where ∆ contains the persistent propositions from Θ and where
• Ψ; ∆ ` N2 : off (app1 e2) tp ′ tp true. By traditional inversion we know there exists

tp ′′ and N ′2 such that tp ′ = arr tp ′′ tp and Ψ; ∆ ` N ′2 : of e2 tp ′′ true.
• Ψ; ∆ ` N1 : of (lamλx.e) arr tp ′ tp true. By traditional inversion we know there

exists N ′1 where Ψ, x:exp; ∆, dx : (of x tp ′) pers ` N ′1 : of e tp true.
We can use T ′ to construct T2 as follows:

T2 = (d0:dest; x0:〈gen tp0 d0〉 eph)
T ′

(Ψ; Θ{x′:〈gen tp d〉 eph, z1:〈gendest d1 d〉 eph})
{} ← dest/unused d1 d z1

{d2, z2} ← dest/promise d
(Ψ, d2:dest; Θ{x′:〈gen tp d〉 eph, z2:〈gendest d2 d〉 eph})

{y′1, y2} ← gen/cont tp d (app2λx.e) tp ′′ d2

(x′ • !(off/app2 tp ′′ (λx.e) tp (λx, dx . !N ′1)) • z2)
(Ψ, d2:dest; Θ{y′1:〈gen tp ′′ d2〉 eph, y2:〈cont (app2λx.e) d2 d〉 eph})

{y1, y2} ← gen/eval tp ′′ d2 e2 (y′1 • !N ′2)
(Ψ, d2:dest; Θ{y1:〈eval e2 d2〉 eph, y2:〈cont (app2λx.e) d2 d〉 eph})

The other cases follow the same pattern.
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offuture: exp -> tp -> prop pers.
genfuture: dest -> exp -> prop lin.

of/future: of X Tp <- offuture X Tp.

future/promise: {Exists d. Exists x. $genfuture d x * !offuture x Tp}.

future/compute: $genfuture D X * !offuture X Tp
>-> {$gen Tp D * $promise D X}.

future/bind: $genfuture D X * !offuture X Tp * !of V Tp * !value V
>-> {!bind X V}.

Figure 9.10: Generative invariant: futures

9.5.4 Extensions

Generative invariants for parallel evaluation (Figure 7.6) and the alternate semantics of paral-
lelism and failure (Figure 7.7) as described in Section 7.2.1 are straightforward extensions of the
development in this section. Synchronization (Section 7.2.2) and futures (Section 7.2.3) are a
bit more interesting from the perspective of generative invariants and preservation. Figure 9.10
is one proposal for a generative invariant for our SLS encoding of futures, but we leave further
consideration for future work.

9.6 Persistent continuations
The final specification style we will cover in detail is the use of persistent continuations as dis-
cussed in Section 7.2.4 as a way of giving an SSOS semantics for first-class continuations (Fig-
ure 7.11). The two critical rules from Figure 7.11 are repeated below: ev/letcc captures the
destination representing the current continuation and the rule ev/throw2 throws away the contin-
uation represented by d2 and throws computation to the continuation represented by the dk .

ev/letcc: $eval (letcc \x. E x) D >-> {$eval (E (contn D)) D}.
ev/throw2: $retn (contn DK) D2 * !cont (throw2 V1) D2 D

>-> {$retn V1 DK}.

While the setup of Figure 9.9 is designed to make the transition to persistent continuations and
letcc seem less unusual, this section still represents a radical shift.

It should not be terribly surprising that the generative invariant for persistent continuations
is rather different than the other generative invariants. Generative invariants capture patterns
of specification, and we have mostly concentrated on patterns that facilitate concurrency and
communication. Persistent continuations, on the other hand, are a pattern mostly associated with
first-class continuations. There is not an obvious way to integrate continuations and parallel or
concurrent evaluation, and the proposal by Moreau and Ribbens in [MR96] is not straightforward
to adapt to the semantic specifications we gave in Chapter 7.
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gen: prop lin.
ofdest: dest -> typ -> prop pers.
gendest: dest -> dest -> prop lin.

value/contn: value (contn D).

of/letcc: of (letcc \x. E x) Tp
<- (All x. of x (conttp Tp) -> of (E x) Tp).

of/contn: of (contn D) (conttp Tp)
<- ofdest D Tp.

of/throw: of (throw E1 E2) Tp’
<- of E1 Tp
<- of E2 (conttp Tp).

off/throw1: off (throw1 E2) Tp Tpx
<- of E2 (conttp Tp).

off/throw2: off (throw2 V1) (conttp Tp) Tpx
<- of V1 Tp
<- value V1.

dest/promise: {Exists d’. $gendest d’ D * !ofdest d’ Tp’}.
dest/fulfill: $gendest D’ D *

!off F Tp’ Tp * !ofdest D’ Tp’ * !ofdest D Tp
>-> {!cont F D’ D}.

gen/eval: $gen * !ofdest D Tp * !of E Tp >-> {eval E D}.
gen/retn: $gen * !ofdest D Tp * !of V Tp * !value V >-> {retn V D}.

Figure 9.11: Generative invariant: persistent destinations and first-class continuations

Consider again the gendest/promise rule from Figure 9.9. Because the rule consumes no non-
terminals and is the only rule to introduce LF variables, any trace T :: (d0:dest;x0:gen tp0 d0) ;∗

(Ψ; ∆) under ΣGen9 .9 can be factored into two parts T = T1;T2 where T1 contains only steps
that use gendest/promise. The computational effect of Theorem 9.6 is that T1 grows to track
the tree-structured shape of the stack, both past and present. We could record, if we wanted to,
the past structure of the control stack by adding a persistent nonterminal ghostcont f d′ d and
modifying dest/unused in Figure 9.9 as follows:

dest/unused: $gendest D’ D >-> {!ghostcont F D’ D}.

Once we make the move to persistent continuations, however, there’s no need to create a ghost
continuation, we can just have the rule dest/unused (renamed to dest/fulfill in Figure 9.11) create
the continuation itself. To make this work, dest/promise predicts the type that will be associated
with a newly-generated destination d by generating a persistent nonterminal ofdest d tp. (This
is just like how gencell/promise in Figure 9.6 predicts the type of a location l by generating
a persistent nonterminal ofcell l tp.) Then, dest/fulfill checks to make sure that the generated
continuation frame has the right type relative to the destinations it connects.
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Taken together, the rules dest/promise and dest/fulfill rules in Figure 9.11 create a tree-
structured map of destinations starting from an initial destination d0 and an initial persistent
atomic proposition ofdest d0 tp0, and the dest/fulfull rule ensures that every destination on this
map encodes a specific and well-typed stack of frames that can be read off by following des-
tinations back to the root d0. The initial ofdest proposition takes over for the mobile proposi-
tion gen tp0 d0 that formed the root of our tree in all previous specifications. The mobile gen
nonterminal no longer needs indices, and just serves to place a single eval or retn somewhere
on the well-typed map of destinations. The initial state of our generative traces is therefore
(d0:dest;x0:〈ofdest d0 tp0〉 pers , z:〈gen〉 eph); this is reflected in the the preservation theorem.

Lemma (Unique indices of ΣGen9 .11 ). Both {ofdest/1} and {gendest/1, cont/2} are unique
index sets under the initial state (d0:dest;x0:〈ofdest d0 tp0〉 pers , z:〈gen〉 eph) and the signature
ΣGen9 .11 .

Proof. Induction and case analysis on the last steps of a given trace.

Lemma (Inversion – Figure 9.11).
1. If T :: (d0:dest; x0:〈ofdest d0 tp0〉 pers , z:〈gen〉 eph) ;∗ΣGen9 .11

(Ψ; Θ{y:〈eval e d〉 eph}),
then T = (T ′; {y} ← gen/eval d tp e (z′ • x • !N)),
where x:〈ofdest d tp〉 pers ∈ ∆, Ψ; ∆ ` N : of e tp true,
T ′ :: (d0:dest; x0:〈ofdest d0 tp0〉 pers , z:〈gen〉 eph) ;∗ΣGen9 .11

(Ψ; Θ{z′:〈gen〉 eph}),
and ∆ is the persistent part of (Ψ; Θ{z′:〈gen〉 eph}).

2. If T :: (d0:dest; x0:〈ofdest d0 tp0〉 pers , z:〈gen〉 eph) ;∗ΣGen9 .11
(Ψ; Θ{y:〈retn v d〉 eph}),

then T = (T ′; {y} ← gen/retn d tp v (z′ • x • !N • !Nv)),
where x:〈ofdest d tp〉 pers ∈ ∆, Ψ; ∆ ` N : of v tp true, Ψ; ∆ ` N : value v true,
T ′ :: (d0:dest; x0:〈ofdest d0 tp0〉 pers , z:〈gen〉 eph) ;∗ΣGen9 .11

(Ψ; Θ{z′:〈gen〉 eph}),
and ∆ is the persistent part of (Ψ; Θ{z′:〈gen〉 eph}).

3. If T :: (d0:dest; x0:〈ofdest d0 tp0〉 pers , z:〈gen〉 eph)
;∗ΣGen9 .11

(Ψ; Θ{y:〈cont f d′ d〉 pers}),
then T = (T ′; {y} ← dest/fulfill d′ d f tp ′ tp (y′ • !N • x′ • x)),
where x′:〈ofdest d′ tp ′〉 pers ∈ ∆, x:〈ofdest d tp〉 pers ∈ ∆, Ψ; ∆ ` N : off f tp ′ tp true
T ′ :: (d0:dest;x0:〈ofdest d0 tp0〉 pers , z:〈gen〉 eph)

;∗ΣGen9 .11
(Ψ; Θ{y′:〈gendest d′ d〉 eph}),

and ∆ is the persistent part of (Ψ; Θ{z′:〈gendest d′ d〉 eph}).

Proof. Induction and case analysis on last steps of the trace T ; each case is individually quite
simple because Var is always a singleton {y}. While we introduce a persistent atomic proposi-
tion cont in part 3, the step that introduces this proposition can always be rotated to the end of
a trace because cont propositions cannot appear in the input interface of any step in under the
generative signature ΣGen9 .11 . This is a specific property of ΣGen9 .11 , but it also follows from
the definition of generative signatures (Definition 9.1), which stipulates that transitions enabled
by a generative signature cannot consume or mention terminals like cont.

As an aside, z will always equal z′ in parts 1 and 2, but we’ll never need to rely on this
fact.
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Theorem 9.7 (ΣGen9 .11 is a generative invariant).
If T1 :: (d0:dest;x0:〈ofdest d0 tp0〉 pers , z:〈gen〉 eph) ;∗ΣGen9 .11

(Ψ; ∆) and S :: (Ψ; ∆)� ;
(Ψ′; ∆′) under the signature from Figure 7.2.4, then (Ψ′; ∆′) = (Ψ′; ∆′′)� for some ∆′′ such that
T2 :: (d0:dest;x0:〈ofdest d0 tp0〉 pers , z:〈gen〉 eph) ;∗ΣGen9 .11

(Ψ′; ∆′′).

(d0:dest; x0:〈ofdest d0 tp0〉 pers , z:〈gen〉 eph)

∗
ΣGen9 .11

(Ψ; ∆)

(Ψ; ∆)�

(d0:dest; x0:〈ofdest d0 tp0〉 pers , z:〈gen〉 eph)

∗
ΣGen9 .11

(Ψ′; ∆′′)

(Ψ′; ∆′)

Proof. As always, the proof proceeds by enumeration, inversion, and reconstruction; the cases
are all fundamentally similar to the ones we have already seen.

9.7 On mechanization
In this chapter, we have shown that generative invariants can describe well-formedness and well-
typedness properties of the full range of specifications discussed in Part II of this dissertation. We
have furthermore shown that these generative invariants are a suitable basis for reasoning about
type preservation in these specifications. All of these proofs have a common 3-step structure:

1. Straightforward unique index properties,

2. An inversion lemma that mimics the structure of the generative signature, and

3. A preservation theorem that proceeds by enumerating transitions, applying inversion to the
given generative trace, and using the result to construct a new generative trace.

Despite the fact that the inversion lemmas in this chapter technically use induction, they do so in
such a trivial way that is quite possible to imagine that inversion lemmas could be automatically
synthesized from a generative signature. Unique index properties may be less straightforward to
synthesize, but like termination and mode properties in Twelf, they should be entirely straight-
forward to verify. Only the last part of step 3, the reconstruction that happens in a preservation
theorem, has the structure of a more general theorem proving task. Therefore, there is reason to
hope that we can mechanize the tedious results in the results in this chapter in a framework that
does much of the work of steps 1 and 2 automatically.
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Chapter 10

Safety for substructural specifications

In Chapter 9, we showed how the preservation theorem could be established for a wide variety of
SSOS semantics, both ordered abstract machines and destination-passing style semantics. The
methodology of generative invariants we espoused goes significantly beyond previous work on
type preservation for operational semantics specifications in substructural logic. Neither Linear
LF encodings by Pfenning, Cervesato, and Reed [CP02, Ree09a], nor the Ordered LF encodings
of Felty and Momigliano [FM12], discussed preservation for concurrent specifications or for
first-class continuations.

More fundamentally, however, this previous work does not even provide a language for
talking about progress theorems, the critical companion of type preservation theorems. These
previous approaches were universally based on complete derivations. These have the flavor of
derivations in a big-step semantics, and it is difficult or even impossible to talk about progress for
such specifications. The purpose of this chapter is to establish that the SLS framework’s traces
T and steps S, which correspond to partial proofs, provide a suitable basis for stating progress
theorems (and therefore language safety theorems) and for proving these theorems.

We do not discuss progress and safety for the full range of specifications from Part II or
Chapter 9, however. Instead, we will just discuss progress for two examples: the ordered abstract
machine specification with parallelism and failure used as an example in Figure 9.1, and the
extension of this specification with mutable storage. The rest is left for future work, though we
claim that these two examples serve to get across all the concepts necessary to prove progress
theorems for SSOS specifications. Ultimately, it is not only possible to prove progress and safety
theorems using SSOS specifications in SLS; it’s also reasonably straightforward.

10.1 Backwards and forwards through traces

In the last chapter, we worked on traces exclusively by induction and case analysis on the last
steps of a generative trace. This form of case analysis and induction on the last steps of a trace
can also be used to prove progress for sequential SSOS specifications, and it is actually neces-
sary to prove progress for SSOS specifications with first-class continuations (discussed in Sec-
tion 7.2.4 and Section 9.6) in this way, though we leave the details of this argument as future
work. However, for the ordered abstract machine example from Figure 9.1, the other direction

269



October 15, 2012
DRAFT

is more natural: we work by induction and case analysis on the first steps of a generative trace.
The branching structure introduced by parallel continuation frames (that is, ordered propositions
cont2 f ) is what makes it more natural to work from the beginning of a generative trace, rather
than the end.

The proof of progress relies critically on one novel property: that transitions in the generative
trace do not tamper with terminals. Formally, we need to know that if Θ{∆} ;∗ΣGen ∆′ under
some generative signature ΣGen and if ∆ contains only terminals, then there is some Θ′ such
that the final state ∆′ matches Θ′{∆}. We will implicitly use this property in most of the cases
of the progress theorem below.

This property holds for all the generative signatures in Chapter 9, but establishing this prop-
erty for generative signatures in general necessitates a further restriction of what counts as a
generative signature (Definition 9.1). To see why, let ∆ = (x1:〈retn v〉 ord , x2:〈cont f〉 ord) and
consider the generative rule ∀e.{eval e}, which is allowed under Definition 9.1. This rule could
“break” the context by dropping an ordered eval e proposition in between x1 and x2. A sufficient
general condition for avoiding this problem in general is to demand that any generative rule that
produces ordered atomic propositions mentions an ordered nonterminal as a premise. (This is
related to the property called separation in [SP08].)

10.2 Progress for ordered abstract machines
The progress property is that, if T :: (x0:〈gen tp0〉 ord) ;∗ΣGen9 .4

∆ and ∆�, then one of these
three possibilities hold:

1. ∆ ; ∆′ under the signature from Figure 9.1,

2. ∆ = y:〈retn v〉 ord , where v is a value, or

3. ∆ = y:〈error〉 ord .

This is exactly the form of a traditional progress theorem: if a process state is well typed, it either
takes a step under the dynamic semantics or is a final state (terminating with an error or returning
a value).

The presence of parallel evaluation in Figure 9.1 necessitates that we generalize our induction
hypothesis. The statement above is a straightforward corollary of Theorem 10.1 below.

Theorem 10.1 (Progress for ordered abstract machines). If T :: Θ{x:〈gen tp〉 ord} ;ΣGen9 .4
∆

and ∆�, then either
∗ ∆ ; ∆′ under the signature from Figure 9.1 for some ∆′, or else
∗ T = (T1; {y} ← gen/retn tp v x;T2) and · ` N : value v true, or else
∗ T = (T1; {y} ← gen/error tp x;T2).

In the proof of Theorem 10.1, we will not consider the details of the proof that already
arise for traditional proofs of progress for abstract machines. These missing details can be fac-
tored into two lemmas. The first lemma is that if · ` N : of e tp pers , then the process state
Θ{x:〈eval e〉 ord} can always take a step; this lemma justifies the classification of eval as an ac-
tive proposition as described in Section 7.2.2 and in [PS09]. The second lemma is traditionally
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called a canonical forms lemma: it verifies, by case analysis on the structure of typing derivations
and values, that well-typed values returned to a well-typed frames can always take a step.

Proof. By induction and case analysis on the first steps of T . We cannot have T = �, because
we cannot apply restriction to a context containing the nonterminal gen tp. So T = S;T ′, and
either x /∈ •S or x ∈ •S.

If x /∈ •S, then T ′ :: Θ′{x:〈gen tp〉 ord} ;ΣGen9 .4
∆ and we can succeed by immediate

appeal to the induction hypothesis.
If x ∈ •S, then we perform case analysis on the possible transitions enabled by ΣGen9 .4 :

∗ S = {y} ← gen/eval e tp (x • !N) where · ` N : of e tp true.
Because eval is a terminal, ∆ = Θ′{y:〈eval e〉 ord}, and we proceed by case analysis on
N to show that the derivation can always take a step (eval is an active proposition).

∗ S = {y} ← gen/retn tp v (x • !N • !Nv) – succeed immediately.

∗ S = {y} ← gen/error tp x – succeed immediately.

∗ S = {y′1, y2} ← gen/cont tp f tp ′ (x • !N) where · ` N : off f tp ′ tp true.
Invoke the i.h. on T ′ : Θ{y′1:〈gen tp ′〉 ord , y2:〈cont f〉 ord};ΣGen9 .4

∆, and then perform
case analysis on the result to prove that ∆ ; ∆′:

If ∆ ; ∆′, then we’re done.
If T ′ = (T ′1; {y1} ← gen/retn tp ′ v (y′1 • !N ′ • !N ′v);T

′
2),

then because retn and cont are terminals, ∆ = Θ′{y1:〈retn v〉 ord , y2:〈cont f〉 ord},
and we proceed by simultaneous case analysis on N , N ′, and N ′v (canonical forms
lemma).
If T ′ = (T ′1; {y1} ← gen/error tp ′ y′1;T ′2),
then because error and cont are terminals, ∆ = Θ′{y1:〈error〉 ord , y2:〈cont f〉 ord},
and we have {z} ← ev/error f (y1 • y2) :: ∆ ; Θ′{z:〈error〉 ord}.

∗ S = {y′1, y′2, y3} ← gen/cont2 tp f tp1 tp2 (x • !N) where · ` N : off2 f tp1 tp2 tp true.
Invoke the i.h. twice on T ′ : Θ{y′1:〈gen tp1〉 ord , y′2:〈gen tp2〉 ord , y3:〈cont2 f〉 ord}, once
to see what happens to y′1, and another time to see what happens to y′2, and then perform
case analysis on the result to prove that ∆ ; ∆′:

If either invocation returns the first disjunctive possibility, that ∆ ; ∆′, then we’re
done.
If both invocations return the second disjunctive possibility, then T ′ contain two steps
{y1} ← gen/retn tp1 v1 (y′1 • !N1 • !Nv1) and
{y2} ← gen/retn tp2 v2 (y′2 • !N2 • !Nv2). Because retn and cont2 are terminals,
∆ = Θ′{y1:〈retn v1〉 ord , y2:〈retn v2〉 ord , y3:〈cont2 f〉 ord}, and we proceed by si-
multaneous case analysis on N , N1, Nv1, N2, and Nv2 (canonical forms lemma).
In all the remaining cases, one of the subcomputations becomes an error and the other
one becomes another error or a returned value. In any of these cases, ∆ ; ∆′ by one
of the rules ev/errret, ev/reterr, or by ev/errerr.
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∗ S = {y′1, y2} ← gen/handle tp e2 (x • !N).
Invoke the i.h. on T ′ : Θ{y′1:〈gen tp ′〉 ord , y2:〈handle e2〉 ord} ;ΣGen9 .4

∆, and then per-
form case analysis on the result to prove that ∆ ; ∆′:

If ∆ ; ∆′, then we’re done.
If T ′ = (T ′1; {y1} ← gen/retn tp ′ v (y′1 • !N ′ • !N ′v);T

′
2),

then because retn and cont are terminals, ∆ = Θ′{y1:〈retn v〉 ord , y2:〈cont f〉 ord},
and we have {z} ← ev/catcha v e2 (y1 • y2) :: ∆ ; Θ′{z:〈retn v〉 ord}.
If T ′ = (T ′1; {y1} ← gen/error tp ′ y′1;T ′2),
then because error and cont are terminals, ∆ = Θ′{y1:〈error〉 ord , y2:〈handle e〉 ord},
and we have {z} ← ev/catchb e2 (y1 • y2) :: ∆ ; Θ′{z:〈eval e2〉 ord}.

This covers all possible first steps in the trace T , and thus completes the proof.

10.3 Progress with mutable storage

Developing progress proofs to for stateful specifications requires a property that is the flip side
of unique index sets (Definition 9.5, Section 9.5.1). Unique index sets require that there will be
only ever be at most one proposition of a certain form, and the dual property, assured index sets,
require that there is always at least one proposition of a certain form.

Definition 10.2. A set S is an assured index set at a type τ under a generative signature Σ and
an initial state (Ψ; ∆) if, whenever (Ψ; ∆) ;∗Σ (Ψ′; ∆′), then Ψ `Σ t : τ implies that, for some
a/i ∈ S, x:〈a t1 . . . tn〉 lvl ∈ ∆′ where ti = t.

The set {gencell/1, cell/1} is also a unique index set under ΣGen9 .6 , and the same set for
ΣGen9 .6 at type mutable loc. The latter property is critical to finishing the extension of Theo-
rem 10.1 proof in certain cases where we invoke the canonical forms lemma. When we invoked
the canonical forms lemma in the cont branch of that proof, we started with the knowledge that
∆ = Θ′{y1:〈retn v〉 ord , y2:〈cont f〉 ord}. Two new outcomes are introduced when we intro-
duce mutable state as discussed in Section 6.5.1 and Section 9.4. The first is the possibility
that v = loc l while f = get1, and the second is the possibility that f = set2 l. In each case,
we cannot proceed with rule ev/get1 or rule ev/set2, respectively, unless we also know that
there is a variable binding z:cell l v′ in ∆. We know precisely this because {gencell/1, cell/1} is
an assured index set, because Ψ ` l:mutable loc, and because gencell propositions, as nonter-
minals, cannot appear in the generated process state ∆. Therefore, in the former case we can
produce a step {y′, z′} ← ev/get1 l v′ (y1 • y2 • z), and in the later case we can produce a step
{y′, z′} ← ev/set2 v l v′ (y1 • y2 • z).

A similar use of assured index sets arises if we try to prove progress for a specification using
letcc (Section 7.2.4 and Section 9.6). We begin with a destination d and need to use the fact that
{gendest/1, cont/2} is an assured index set to confirm that we have some continuation frame to
return to.
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10.4 Safety
We conclude by presenting the safety theorem for the ordered abstract machine specification
from Figure 9.1. This theorem relates the encoding of the usual deductive formulation of the
typing judgment, of e tp, to a progress property state in terms of substructural process states.

Theorem 10.3 (Safety for ordered abstract machines). If T :: (x:〈eval e〉 ord) ;∗ ∆ under the
signature from Figure 9.1 and · ` N : of e tp, then either
∗ ∆ ; ∆′ under the signature from Figure 9.1 for some ∆′, or else
∗ ∆ = (y:〈retn v〉 ord) and · ` N : value v, or else
∗ ∆ = (y:〈error〉 ord).

Proof. First, by induction and case analysis on the last steps of T , we show that for all ∆′

such that T ′ :: (x:〈eval e〉 ord) ;∗ ∆′ under the signature from Figure 9.1, we can construct a
generative trace Tg :: (x0:〈gen tp〉 ord) ;∗ΣGen9 .4

∆′:

Base case T ′ = �.
Construct Tg = {x} ← gen/eval tp e (x0 • !N) :: (x0:〈gen tp〉 ord) ;∗ΣGen9 .4

(x:〈eval e〉 ord).

Inductive case T ′ = T ′′;S, where T ′′ :: (x0:〈gen tp〉 ord) ;∗ΣGen9 .4
∆′′ and S :: ∆′′ ;ΣGen9 .4

∆′.
By the induction hypothesis, we have T ′g :: (x0:〈gen tp〉 ord) ;∗ΣGen9 .4

∆′′. By preservation
(Theorem 9.3) on T ′g and S, we have T ′g :: (x0:〈gen tp〉 ord) ;∗ΣGen9 .4

∆′.

This means, in particular, that we can construct Tg :: (x0:〈gen tp〉 ord) ;∗ΣGen9 .4
∆.

By the progress theorem (Theorem 10.1) on Tg, there are three possibilities:

∗ If ∆ ; ∆′, then we’re done.
∗ If Tg :: (T1; {y} ← gen/retn tp v (x0 • !N ′ • !N ′v);T2), then by a trivial case analysis on
T1 and T2 we can conclude that both are empty and, therefore, that ∆ = (y:〈retn v〉 ord).
∗ If Tg :: (T1; {y} ← gen/error tp x0;T2), then by a trivial case analysis on T1 and T2 we

can conclude that both are empty and, therefore, that ∆ = (y:〈error〉 ord).

This concludes the proof of safety.
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Chapter 11

Conclusion

This document has endeavored to support the following thesis:

Thesis Statement: Logical frameworks based on a rewriting interpretation of sub-
structural logics are suitable for modular specification of programming languages
and formal reasoning about their properties.

In the service of this thesis, we first developed a logical framework of substructural logi-
cal specifications (SLS) based on a rewriting interpretation of ordered linear lax logic (OL3).
Part I of the dissertation discusses the design of this logical framework, and in the process firmly
establishes the elegant connection between two sets of techniques:

1. Canonical forms and hereditary substitution in a logical framework, on one hand, and

2. Focused derivations and cut admissibility in logic, on the other.

The broad outlines of this connection have been known for a decade, but this dissertation gives
the first account of the connection that generalizes to all logical connectives. This connection
allows the SLS framework to be presented as a syntactic refinement of focused ordered linear
lax logic; the steps and traces of SLS, which provide its rewriting interpretation, are justified as
partial proofs in focused ordered linear lax logic. SLS does move beyond the connection with
focused logic due to the introduction of concurrent equality, which allows logically independent
steps in a trace to be reordered; we conjecture that the resulting equivalence relation imposed
on our logical framework is analogous to the one given by multifocusing in logic, but a full
exposition of this connection is left for future work.

The SLS framework acts as a bridge between the world of logical frameworks, where de-
ductive derivations are the principal objects of study, and the world of rewriting logic, where
rewriting sequences that are similar to SLS traces are the principal objects of study. Part II of
this dissertation discusses a number of ways of describing operational semantics specifications
in SLS, using ordered resources to encode control structures, using mobile/linear resources to
encode mutable state and concurrent communication, and using persistent resources to represent
memoization and binding. Different styles of specification are connected to each other through
systematic transformations on SLS specifications that we prove to be generally sound, a method-
ology named the logical correspondence, following Danvy et al.’s functional correspondence.
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Most of the systematic transformations discussed in Chapter 6 and Chapter 7 – operationaliza-
tion, defunctionalization, and destination-adding – are implemented in the SLS prototype im-
plementation. Utilizing this implementation, we show in Appendix B that it is possible to fuse
together a single coherent SLS specification of a MiniML language with concurrency, state, and
communication using various different styles of specification, including natural semantics where
appropriate.

This dissertation also discusses two different methodologies for formally reasoning about
properties of operational semantics specifications in SLS. The program analysis methodology
considered in Chapter 8 allows us to derive effectively executable abstractions of an opera-
tional semantics directly from an operational semantics specification in SLS. The methodology
of progress, preservation, and type safety considered in Chapter 9 and Chapter 10 is presented
as a natural extension of traditional “safety = progress + preservation” reasoning. In a sense,
the work described in this document has pushed our ability to reason formally about properties
of SLS specifications (and substructural operational semantics specifications in particular) some
distance beyond our ability to informally reason about these specifications. An important direc-
tion for future work will be to move beyond the misleadingly-sequential language of SLS traces
and develop a more user-friendly language for writing, talking, and thinking about traces in SLS,
especially generative traces.

276



October 15, 2012
DRAFT

Appendix A

Process states summary

In this dissertation, we emphasize the use of process states to describe the internal states of
the evolving systems we are interested in. This view is an extension of Miller’s processes-as-
formula interpretation [Mil93, DCS12]. Of course, a process state is not a formula; Section 4.7.2
discusses our emphasis on SLS process states instead of SLS formulas as the fundamental repre-
sentation of the internal states of evolving systems.

A process state as defined in Chapter 4 has the form (Ψ; ∆)σ, though outside of Chapter 4
we never use the associated substitution σ, writing (Ψ; ∆) to indicate the empty substitution
σ = ·. The first-order context Ψ, which is sometimes omitted, is also called the LF context
in SLS because Spine Form LF is the first-order term language of SLS (Section 4.1). ∆ is a
substructural context.

A.1 Substructural contexts

A substructural context (written as ∆ and occasionally as Ξ) is a sequence of variable bindings
x:T lvl – all the variables x bound in a context must be distinct. In SLS, lvl is either ord (ordered
resources), eph (mobile resources, also called ephemeral or linear resources), or pers (persistent
resources).

In stable process states, T is usually a suspended positive atomic proposition 〈Q〉. The per-
meability of a positive atomic proposition (ordered, mobile/linear/ephemeral, or persistent) is
one of its intrinsic properties (Section 2.5.4, Section 3.3.2), so we can write x:〈Q〉 instead of
x:〈Q〉 ord , x:〈Q〉 eph, or x:〈Q〉 pers if the permeability of Q is known from the context. So the
encoding of the string [ < > ( [ ] ), described in the introduction as

left(sq) left(an) right(an) left(pa) left(sq) right(sq) right(pa)

is more properly described as

x1:〈left(sq)〉, x2:〈left(an)〉, x3:〈right(an)〉, x4:〈left(pa)〉, x5:〈left(sq)〉, x6:〈right(sq)〉, x7:〈right(pa)〉

We write x1:〈left(sq)〉 instead of x1:〈left(sq)〉 ord above, leaving implicit the fact that left and
right are ordered predicates.

277



October 15, 2012
DRAFT

It is also possible, in nested SLS specifications (Section 5.1, Section 6.1), to have variable
bindings x:A− ord , x:A− eph, and x:A− pers . These nested specifications act much like rules in
the SLS signature, though mobile rules (x:A− eph) can only be used one time, and ordered rules
(x:A− ord ) can only be used one time and only in one particular part of the context (Figure 5.2).

Chapter 3 treats substructural contexts strictly as sequences, but in later chapters we treat
substructural contexts in a more relaxed fashion, allowing mobile/linear/ephemeral and persistent
variable bindings to be tacitly reordered relative to one another other and relative to ordered
propositions. In this relaxed reading, (x1:〈Q1〉 ord , x2:〈Q2〉 ord) and (x2:〈Q2〉 ord , x1:〈Q1〉 ord)
are not equivalent contexts but (x3:〈Q3〉 pers , x2:〈Q2〉 ord) and (x2:〈Q2〉 ord , x3:〈Q3〉 pers) are.

A frame Θ represents a context with a hole in it. The notation Θ{∆} tacks the substructural
context ∆ into the hole in Θ; the context and the frame must have disjoint variable domains
for this to make sense. In Chapter 3, frames are interrupted sequences of variable bindings
x1:T1 lvl , . . . xn:Tn lvl ,2, xn+1:Tn+1 lvl , . . . xm:Tm lvl , where the box represents the hole. In later
chapters, this is relaxed in keeping with the relaxed treatment of contexts modulo reordering of
mobile and persistent variable bindings.

A.2 Steps and traces
Under focusing, a SLS proposition can correspond to some number of synthetic transitions (Sec-
tion 2.4, Section 4.2.6). The declaration rule : Q1 • Q2 � {Q3 • Q2}1 in an SLS signature
Σ, where Q1 is ordered, Q2 is mobile, and Q3 is persistent, is associated with this synthetic
transition:

Θ{x1:〈Q1〉 ord , x2:〈Q2〉 eph};Σ Θ{y1:〈Q3〉 pers , y2:〈Q2〉 eph}

The variable bindings x1 and x2 no longer appear in Θ{y1:〈Q3〉 pers , y2:〈Q2〉 eph}. The proof
terms associated with synthetic transitions are steps (Section 4.2.6), and the step correspond-
ing to the synthetic transition above is written as {y1, y2} ← rule (x1 • x2). As described in
Section 4.2.6, we can relate the step to the synthetic transition like this:

{y1, y2} ← rule (x1 • x2) :: Θ{x1:〈Q1〉 ord , x2:〈Q2〉 eph};Σ Θ{y1:〈Q3〉 pers , y2:〈Q2〉 eph}

As described in Section 4.2.7, we can also use a more Hoare-logic inspired notation:

Θ{x1:〈Q1〉 ord , x2:〈Q2〉 eph}
{y1, y2} ← rule (x1 • x2)

Θ{y1:〈Q3〉 pers , y2:〈Q2〉 eph}

The reflexive-transitive closure of;Σ is;∗Σ, and the proof terms witnessing these sequences
of synthetic transitions are traces T ::= � | S | T ;T . Concurrent equality (Section 4.3) is
an equivalence relation on traces that allows us to rearrange the steps S1 = {P1} ← R1 and
S2 = {P2} ← R2 in a trace when the variables introduced by P1 (the output interface of S1,
written S1

•) are not mentioned in R2 (the input interface of S2, written •S2) and vice versa.
1This is synonymous with the proposition Q1 •Q2 � #(Q3 •Q2) (Section 4.2).
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Appendix B

A hybrid specification of Mini-ML

In this section, we present the specification that was illustrated in Figure 5.4 as a full SLS spec-
ification. This specification is a hybrid or chimera: it has individual features that are presented
using big-step natural semantics, nested ordered abstract machine semantics, flat ordered abstract
machine semantics, and destination-passing semantics.

Illustrating the logical correspondence methodology that we introduced in Chapter 5 and
expounded upon in Chapters 6 and 7, all these specifications can transformed into a common
flat destination-passing semantics. With the exception of Concurrent ML primitives, which were
only alluded to in Section 7.2.2, all the pieces of this specification (or very similar variants) have
been presented elsewhere in the dissertation. The specification in this section is careful to present
the entire SLS specification, as opposed to other examples in which the relevant LF declarations
were almost always omitted.

The lowest common denominator of destination-passing semantics can be represented in
CLF, and the SLS implementation is able to output CLF code readable in Schack-Nielsen’s Celf
implementation [SNS08]. The implemented logic programming engine of Celf is therefore able
to execute Mini-ML programs encoded as terms of type exp in our hybrid specification.

B.1 Pure Mini-ML

There are various toy languages calling themselves “Mini-ML” in the literature. All Mini-MLs
reflect some of the flavor of functional programming while avoiding features such as com-
plex pattern-matching and datatype declarations that make the core language of Standard ML
[MTHM97] a bit more complicated. Of course, Mini-MLs universally avoid the sophisticated
ML module language as well.

Like the PCF language [Plo97], Mini-ML variants usually have at least a fixed-point operator,
unary natural numbers, and functions. We add Boolean and pair values to this mix, as well as
the arbitrary choice operator pe1 #? e2q = arb pe1q pe2q from Section 6.4.1. The specification in
Section B.1.2 is an encoding of the natural semantics judgment pe ⇓ vq = ev peq pvq presented
throughout Chapter 6. The language is pure – the only effect is nontermination – so we can fully
specify the language as a big-step operational semantics.
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B.1.1 Syntax
exp: type.
lam: (exp -> exp) -> exp. ; fn x => e
app: exp -> exp -> exp. ; e(e)
fix: (exp -> exp) -> exp. ; fix x.e
true: exp. ; tt
false: exp. ; ff
ite: exp -> exp -> exp -> exp. ; if e then et else ef
zero: exp. ; z
succ: exp -> exp. ; s(e)
case: exp -> exp -> (exp -> exp) -> exp. ; case e of z => ez | s x => es
unit: exp. ; <>
pair: exp -> exp -> exp. ; <e1, e2>
fst: exp -> exp. ; e.1
snd: exp -> exp. ; e.2
arb: exp -> exp -> exp. ; e1 ?? e2

B.1.2 Natural semantics
#mode ev + -.
ev: exp -> exp -> prop.

ev/lam: ev (lam \x. E x) (lam \x. E x).

ev/app: ev (app E1 E2) V
<- ev E1 (lam \x. E x)
<- ev E2 V2
<- ev (E V2) V.

ev/fix: ev (fix \x. E x) V
<- ev (E (fix \x. E x)) V.

ev/true: ev true true.

ev/false: ev false false.

#mode caseb + + + -.
caseb: exp -> exp -> exp -> exp -> prop.

ev/ite: ev (ite E Et Ef) V
<- ev E V’
<- caseb V’ Et Ef V.

case/t: caseb true Et Ef V
<- ev Et V.

case/f: caseb false Et Ef V
<- ev Et V.

ev/zero: ev zero zero.
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ev/succ: ev (succ E) (succ V)
<- ev E V.

#mode casen + + + -.
casen: exp -> exp -> (exp -> exp) -> exp -> prop.

ev/case: ev (case E Ez \x. Es x) V
<- ev E V’
<- casen V’ Ez (\x. Es x) V.

case/z: casen zero Ez (\x. Es x) V
<- ev Ez V.

case/s: casen (succ V) Ez (\x. Es x) V
<- ev (Es V) V.

ev/unit: ev unit unit.

ev/pair: ev (pair E1 E2) (pair V1 V2)
<- ev E1 V1
<- ev E2 V2.

ev/fst: ev (fst E) V1
<- ev E (pair V1 V2).

ev/snd: ev (fst E) V2
<- ev E (pair V1 V2).

ev/arb1: ev (arb E1 E2) V
<- ev E1 V.

ev/arb2: ev (arb E1 E2) V
<- ev E2 V.

B.2 State

The strength of an ordered abstract machine semantics specification is its ability to handle mod-
ular addition of stateful features. While Section 6.5 discussed the modular extension of flat or-
dered abstract machines, nested ordered abstract machines are also perfectly capable of handling
stateful features such as mutable storage (Section 6.5.1) and call-by-need recursive suspensions
(Section 6.5.2).

B.2.1 Syntax
mutable_loc: type.
loc: mutable_loc -> exp. ; (no concrete syntax)
ref: exp -> exp. ; ref e
get: exp -> exp. ; !e
set: exp -> exp -> exp. ; e1 := e2
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bind_loc: type.
issusp: bind_loc -> exp. ; (no concrete syntax)
thunk: (exp -> exp) -> exp. ; thunk x.e
force: exp -> exp. ; force e

B.2.2 Nested ordered abstract machine semantics
In Section 6.5.1, we discussed mutable storage as a flat ordered abstract machine (Figure 6.14),
but it is equally straightforward to describe a nested ordered abstract machine for mutable stor-
age.

cell: mutable_loc -> exp -> prop lin.

ev/loc: eval (loc L) >-> {retn (loc L)}.

ev/ref: eval (ref E1)
>-> {eval E1 *

(All V1. retn V1
>-> {Exists l. retn (loc l) * $cell l V1})}.

ev/get: eval (get E1)
>-> {eval E1 *

(All L. retn (loc L) * $cell L V
>-> {retn V * $cell L V})}.

ev/set: eval (set E1 E2)
>-> {eval E1 *

(All L. retn (loc L)
>-> {eval E2 *

(All V2. All Vignored. retn V2 * $cell L Vignored
>-> {retn unit * $cell L V2})})}.

B.2.3 Flat ordered abstract machine semantics
In Section 6.5.2, we gave both a semantics for call-by-need recursive suspensions, both as a
flat ordered abstract machine (Figure 6.16) and a nested ordered abstract machine (Figure 6.17).
However, the nested ordered abstract machine from Figure 6.17 uses the with connective A− N
B−, and our implementation of defunctionalization transformation doesn’t handle this connec-
tive. Therefore, we repeat the flat ordered abstract machine from Figure 6.16. Note, however,
that there is no technical reason why A−NB− should be difficult to handle; any actual difficulty
is mostly in terms of making sure uncurrying (Section 6.2.2) does something sensible.

susp: bind_loc -> (exp -> exp) -> prop lin.
blackhole: bind_loc -> prop lin.
bind: bind_loc -> exp -> prop pers.

force1: frame.
bind1: bind_loc -> frame.
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ev/susp: eval (issusp L) >-> {retn (issusp L)}.

ev/thunk: eval (thunk \x. E x)
>-> {Exists l. $susp l (\x. E x) * retn (issusp l)}.

ev/force: eval (force E) >-> {eval E * cont force1}.

ev/suspended1: retn (issusp L) * cont force1 * $susp L (\x. E’ x)
>-> {eval (E’ (issusp L)) * cont (bind1 L) * $blackhole L}.

ev/suspended2: retn V * cont (bind1 L) * $blackhole L
>-> {retn V * !bind L V}.

ev/memoized: retn (issusp L) * cont force1 * !bind L V
>-> {retn V}.

B.3 Failure

The reason we introduced frames in Section 6.2.3 was to allow the semantics of recoverable
failure to talk generically about all continuations. In Section B.3.2, we generalize the semantics
from Section 6.5.4 by having exceptions carry a value.

B.3.1 Syntax
raise: exp -> exp. ; raise e
try: exp -> (exp -> exp) -> exp. ; try e catch x.ef

B.3.2 Flat ordered abstract machine semantics
handle: (exp -> exp) -> prop ord.
error: exp -> prop ord.

raise1: frame.

ev/raise: eval (raise E) >-> {eval E * cont raise1}.

ev/raise1: retn V * cont raise1 >-> {error V}.

ev/try: eval (try E1 (\x. E2 x))
>-> {eval E1 * handle (\x. E2 x)}.

error/cont: error V * cont F >-> {error V}.

error/hand: error V * handle (\x. E2 x) >-> {eval (E2 V)}.

retn/hand: retn V * handle (\x. E2 x) >-> {retn V}.
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B.4 Parallelism
While ordered abstract machines can represent parallel evaluation, and the operationalization
transformation can expose it, parallel ordered abstract machines and the destination-adding trans-
formation do not interact a helpful way. Therefore, for our hybrid specification, we will describe
parallel evaluation at the destination-passing level, as in Section 7.2.1.

B.4.1 Destination-passing semantics
Instead of the parallel pairs shown in Figure 6.8 and Figure 7.6, we will use a parallel let construct
pletpar (x1, x2) = (e1, e2) in eq = letpar pe1q pe2qλx1. λx2. peq.

cont2: frame -> dest -> dest -> dest -> prop lin.

letpar: exp -> exp -> (exp -> exp -> exp) -> exp.
letpar1: (exp -> exp -> exp) -> frame.

ev/letpar: eval (letpar E1 E2 \x. \y. E x y) D
>-> {Exists d1. eval E1 d1 *

Exists d2. eval E2 d2 *
cont2 (letpar1 \x. \y. E x y) d1 d2 D}.

ev/letpar1: retn V1 D1 * retn V2 D2 *
cont2 (letpar1 \x. \y. E x y) D1 D2 D
>-> {eval (E V1 V2) D}.

B.4.2 Integration of parallelism and exceptions
We have discussed two semantics for parallel evaluation. The first semantics, in Section 6.5.4,
only raised an error if both parallel branches terminated and one raised an error. The second
semantics, in Section 7.2.1, raised an error if either branch raised an error, and then allowed the
other branch to return a value.

We will demonstrate a third option here, the sequential exception semantics used by Manti-
core [FRR08]. An error raised by the second scrutinee e2 of letpar will only be passed up the
stack if the first scrutinee e1 returns a value. We also represent Manticore’s cancellation – if
the first branch of a parallel evaluation raises an exception, then rather than passively waiting
for the second branch to terminate we proactively walk up its stack attempting to cancel the
computation.

cancel: dest -> prop lin.

ev/errorL: error V D1 * cont2 X D1 D2 D
>-> {error V D * cancel D2}.

ev/errorR: retn _ D1 * error V D2 * cont2 _ D1 D2 D
>-> {error V D}.
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cancel/eval: eval _ D * cancel D >-> {one}.
cancel/retn: retn _ D * cancel D >-> {one}.
cancel/error: error _ D * cancel D >-> {one}.
cancel/cont: cont _ D’ D * cancel D >-> {cancel D’}.
cancel/cont2: cont2 _ D1 D2 D * cancel D >-> {cancel D1 * cancel D2}.

B.5 Concurrency
Concurrent ML is an excellent example of the power of destination-passing specifications. The
Concurrent ML primitives allow a computation to develop a rich interaction structure that does
not mesh well with the use of ordered logic, but the destination-passing style allows for a clean
specification that is fundamentally like the one used for simple synchronization in Section 7.2.2.
This account directly follows Cervesato et al.’s account [CPWW02], similarly neglecting nega-
tive acknowledgements.

B.5.1 Syntax
channel: type.
spawn: exp -> exp. ; spawn e
exit: exp. ; exit.
newch: exp. ; channel
chan: channel -> exp. ; (no concrete syntax)
sync: exp -> exp. ; sync e
send: exp -> exp -> exp. ; sync c e
recv: exp -> exp. ; recv c
always: exp -> exp. ; always e
choose: exp -> exp -> exp. ; e1 + e2
never: exp. ; 0
wrap: exp -> (exp -> exp) -> exp. ; wrap e in x.e’

B.5.2 Natural semantics
Many of the pieces of Concurrent ML do not interact concurrency directly; instead, they build
channels and event values that drive synchronization. In our hybrid specification methodology,
we can give these pure parts of the Concurrent ML specification a big-step natural semantics
specification.

ev/chan: ev (chan C) (chan C).

ev/always: ev (always E1) (always V1)
<- ev E1 V1.

ev/recv: ev (recv E1) (recv V1)
<- ev E1 V1.

ev/send: ev (send E1 E2) (send V1 V2)
<- ev E1 V1
<- ev E2 V2.
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ev/choose: ev (choose E1 E2) (choose V1 V2)
<- ev E1 V1
<- ev E2 V2.

ev/never: ev never never.

ev/wrap: ev (wrap E1 \x. E2 x) (wrap V1 \x. E2 x)
<- ev E1 V1.

B.5.3 Destination-passing semantics
The destination-passing semantics of Concurrent ML has three main parts. The first part, a spawn
primitive, creates a new disconnected thread of computation – the same kind of disconnected
thread that we used for the interaction of parallelism and failure in Section 7.2.1. The newch
primitive creates a new channel for communication.

terminate: dest -> prop lin.

term/retn: retn _ D * terminate D >-> {one}.
term/error: error _ D * terminate D >-> {one}.

ev/spawn: eval (spawn E) D
>-> {retn unit D *

Exists d’. eval E d’ * terminate d’}.

ev/newch: eval newch D >-> {Exists c. retn (chan c) D}.

The critical feature of Concurrent ML is synchronization, which is much more complex than the
simple synchronization described in Section 7.2.2, and has something of the flavor of the labels
described in that section. An action can include many alternatives, but if a send and a receive can
simultaneously take place along a single channel, then the synch/communicate rule can enable
both of the waiting synch expressions to proceed evaluating as eval expressions.

Here as in Cervesato et al.’s specification, events are atomically paired up using the backward-
chaining action rules, which are not transformed: the intent is for the action predicate to act like
a backtracking, backward-chaining logic programs in the course of evaluation.

#mode action + - -.
action: exp -> exp -> (exp -> exp) -> prop.

act/t: action (always V) (always V) (\x. x).
act/s: action (send (chan C) V) (send (chan C) V) (\x. x).
act/v: action (recv (chan C)) (recv (chan C)) (\x. x).
act/l: action (choose Event1 Event2) Lab (\x. E x)

<- action Event1 Lab (\x. E x).
act/r: action (choose Event1 Event2) Lab (\x. E x)

<- action Event2 Lab (\x. E x).
act/w: action (wrap Event1 \x. E2 x) Lab (\x. app (lam (\x. E2 x)) (E x))

<- action Event1 Lab (\x. E x).
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synch: exp -> dest -> prop lin.

sync1: frame.

ev/sync:
eval (sync E1) D >-> {Exists d1. eval E1 d1 * cont sync1 d1 D}.

ev/sync1:
retn W D1 * cont sync1 D1 D >-> {synch W D}.

synch/always:
synch Event D *
!action Event (always V’) (\x. E x)
>-> {eval (E V’) D}.

synch/communicate:
synch Event1 D1 *
!action Event1 (send (chan C) V) (\x. E1 x) *
synch Event2 D2 *
!action Event2 (recv (chan C)) (\x. E2 x)
>-> {eval (E1 unit) D1 * eval (E2 V) D2}.

B.6 Composing the semantics
Within Standard ML, we can read the various specifications described in this appendix and use
directives to successively operationalize, defunctionalize, add destinations, and output CLF that
is readable by the Celf implementation.

CM.make "../../r/sls/sources.cm";
fun HEADING s = print ("\n\n== "ˆsˆ" ==\n\n");
Frontend.init ();

HEADING "NATURAL SEMANTICS";
Frontend.reset ();
Frontend.read "#operationalize \"ord-nested.auto.sls\" \
\ (ev ˜> eval retn)\
\ (casen ˜> casen retn)\
\ (caseb ˜> caseb retn).";
Frontend.load "compose/pure-exp.sls";
Frontend.load "compose/pure-natsem.sls";
Frontend.load "compose/concur-exp.sls";
Frontend.load "compose/concur-natsem.sls";
Frontend.read "#operationalize stop.";

HEADING "ORDERED ABSTRACT MACHINES (nested)";
Frontend.reset ();
Frontend.read "#defunctionalize \"ord-flat.auto.sls\" \
\ (cont frame : ord).";
Frontend.load "ord-nested.auto.sls";
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Frontend.load "compose/imp-exp.sls";
Frontend.load "compose/imp-ordmachine.sls";
Frontend.read "#defunctionalize stop.";

HEADING "ORDERED ABSTRACT MACHINES (flat)";
Frontend.reset ();
Frontend.read "#destadd \"dest.auto.sls\" \
\ dest eval retn error casen caseb.";
Frontend.load "ord-flat.auto.sls";
Frontend.load "compose/control-exp.sls";
Frontend.load "compose/control-ordmachine.sls";
Frontend.load "compose/susp-ordmachine.sls";

HEADING "DESTINATION-PASSING";
Frontend.reset ();
Frontend.read "#clf \"miniml.clf\".";
Frontend.load "dest.auto.sls";
Frontend.load "compose/par-dest1.sls";
Frontend.load "compose/par-dest2.sls";
Frontend.load "compose/concur-dest1.sls";
Frontend.load "compose/concur-dest2.sls";
Frontend.read "#clf stop.";
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