Chapter 8

Linear logical approximation

A general recipe for constructing a sound program analysis is to (1) specify the operational se-
mantics of the underlying programming language via an interpreter, and (2) specify a terminat-
ing approximation of the interpreter itself. This is the basic idea behind abstract interpretation
[CCT77], which provides techniques for constructing approximations (for example, by exhibiting
a Galois connection between concrete and abstract domains). The correctness proof must estab-
lish the appropriate relationship between the concrete and abstract computations and show that
the abstract computation terminates. We need to vary both the specification of the operational se-
mantics and the form of the approximation in order to obtain various kinds of program analyses,
sometimes with considerable ingenuity.

In this chapter, which is mostly derived from [SP11], we consider a new class of instances in
the general schema of abstract interpretation that is based on the approximation of SSOS spec-
ifications in SLS. We apply logically justified techniques for manipulating and approximating
SSOS specifications to yield approximations that are correct by construction. The resulting per-
sistent logical specifications can be interpreted and executed as saturating logic programs, which
means that derived specifications are executable program analyses.

The process described in this chapter does not claim to capture or derive all possible inter-
esting program analyses. The methodology we describe only derives over-approximations (or
may- analyses) that ensure all possible behaviors will be reported by the analysis. There is a
whole separate class of under-approximations (or must- analyses) which ensure that if a behav-
ior is reported by the analysis it is possible; we will not consider under-approximations here
[GNRT10]. Instead, we argue for the utility of our methodology by deriving two fundamental
and rather different over-approximation-based analyses: a context-insensitive control flow anal-
ysis (Section 8.4) and an alias analysis (Section 8.5). Might and Van Horn’s closely related
“abstracting abstract machines” methodology, described in Section 8.6 along with other related
work, suggests many more examples.

8.1 Saturating logic programming

Concurrent SLS specifications where all positive atomic propositions are persistent (and where
all inclusions of negative propositions in positive propositions — if there are any — have the form
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'A=, not JA~ or {A™) have a distinct logical and operational character. Logically, by the discus-
sion in Section 3.7 we are justified in reading such specifications as specifications in persistent
intuitionistic logic or persistent lax logic. Operationally, while persistent specifications have an
interpretation as transition systems, that interpretation is not very useful. This is because if we
can take a transition once — for instance, using the rule a — {b} to derive the persistent atomic
proposition b from the persistent atomic proposition a — none of the facts that enabled that tran-
sition can be consumed, as all facts are persistent. Therefore, we can continue to make the same
transition indefinitely; in the above-mentioned example, such transitions will derive multiple
redundant copies of b.

The way we will understand the meaning of persistent and concurrent SLS specifications
is in terms of saturation. A process state (W; A) is saturated relative to the signature ¥ if, for
any step (U; A) ~y (U5 A), it is the case that ¥ and V' are the same (the step unified no
distinct variables and introduced no new variables), z:(p;.,,) € A’ implies z:(p},,,) € A, and
x:A” pers € A’ implies x: A~ pers € A. This means that a signature with a rule that produces
new variables by existential quantification, like a ~ {3z.b(x)} has no saturated process states
where a is present. We will cope with rules of this form by turning them into rules of the form
a — {Jz.b(x) e x = t} for some ¢, neutralizing the free existential variable as a notational
definition. Notions of saturation that can cope with free existentially generated variables in other
ways are interesting, but are beyond the scope of this dissertation.

A minimal saturated process state is one with no duplicated propositions; we can compute
a minimal process state from any saturated process state by removing duplicates. For purely
persistent specifications and process states, minimal saturated process states are unique when
they exist: if (U; A) ~% (¥1;Aq) and (V; A) ~3% (Uy; Ay) and both (W5 Ay) and (Wy; Ay) are
saturated, then (Vq; A;) and (¥9; Ay) have minimal process states that differ only in the names
of variables.

Furthermore, if a saturated process state exists for a given initial process state, the minimal
saturated process state can be computed by the usual forward-chaining semantics where only
transitions that derive new persistent atomic propositions or equalities ¢ = s are allowed. This
forward-chaining logic programming interpretation of persistent logic is extremely common,
usually associated with the logic programming language Datalog. A generalization of Datalog
formed the basis of McAllester and Ganzinger’s meta-complexity results: they gave a cost se-
mantics to their logic programming language, and then they used that cost semantics to argue that
many program analyses could be efficiently implemented as logic programs [McA02, GMO02].
Persistent SLS specifications can be seen as an extension of McAllester and Ganzinger’s lan-
guage (and, transitively, as a generalization of Datalog). We will not deal with cost semantics or
efficiency, however, as our use of higher-order abstract syntax appears to complicate McAllester
and Ganzinger’s cost semantics.

Just as the term persistent logic was introduced in Chapter 2 to distinguish what is tradi-
tionally referred to as intuitionistic logic from intuitionistic ordered and linear logic, we will
use the term saturating logic programming to distinguish what is traditionally referred to as
forward-chaining logic programming from the forward-chaining logic programming interpreta-
tion that makes sense for ordered and linear logical specifications. There is a useful variant of
substructural forward chaining, forward chaining with guiescence [LPPWO05], that acts like sat-
urating logic programming on purely-persistent specifications and like simple committed-choice
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hd: dest —-> dest -> prop pers.

left: tok —-> dest -> dest -> prop pers.
right: tok -> dest -> dest -> prop pers.
stack: tok —-> dest -> dest —-> prop pers.

push: hd L M x left X M R
>—> {Exists m. stack X L m  hd m R » m == fm X L M R}.

pop: stack X L Ml % hd M1 M2 * right X M2 R >-> {hd L R}.

Figure 8.1: Skolemized approximate version of the PDA specification from Figure 7.2

forward chaining on specifications with no persistent propositions. We refined this interpretation
and gave it a cost semantics in [SPO8], but this more sophisticated interpretation is not relevant
to the examples in this dissertation.

8.2 Using approximation

The meta-approximation theorem that we present in the next section gives us a way of building
abstractions from specifications and initial process states: we interpret the approximate version
of the program as a saturating logic program over that initial state. If we can obtain a saturated
process state using the logic programming interpretation, it is an abstraction of the initial process
state. It is not always possible to obtain a saturated process state using the logic programming
interpretation, however: rules like Vz.a(xz) — {a(s(z))} and Vz.a(z) — {3Jy.a(y)} lead to
non-termination when interpreted as saturating logic programs. Important classes of programs
are known to terminate in all cases, such as those in the Datalog fragment where the only terms
in the program are variables and constants. Structured terms (like expressions encoded in the LF
type exp) fall outside the Datalog fragment.

Consider the destination-passing PDA specification from Figure 7.2. If we simply turn all
linear predicates persistent, the first step in the approximation methodology, then the push rule
will lead to non-termination because the head dm.stack x [ mehd m r introduces a new existential
parameter . We can cope by adding a new conclusion m = t; adding new conclusions is the
second step in the approximation methodology. This, however, means we have to pick a ¢. The
most general starting point for selecting a ¢ is to apply Skolemization to the rule. By moving
the existential quantifier for m in front of the implicitly quantified X, L, M, and R, we get a
Skolem function fm X L M R that takes four arguments. Letting ¢ = fm X L M R results in the
SLS specification/logic program shown in Figure 8.1. (Remember that, because the specification
in Figure 8.1 is purely persistent, we will omit the optional ! annotation described in Section 4.5,
writing hd L Minstead of 'hd L M and so on.)

Notice that we have effectively taken a specification that freely introduces existential quan-
tification (and that therefore definitely will not terminate when interpreted as a saturating logic
program) and produced a specification that uses structured terms fm X L R M. But the intro-
duction of structured terms takes us outside the Datalog fragment, which may also lead to non-
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termination! This is not as bad as it may seem: when we want to treat a specification with
structured terms as a saturating logic program, it is simply necessary to reason explicitly about
termination. Giving any finite upper bound on the number of derivable facts is a simple and
sufficient criteria for showing that a saturating logic program terminates.

Skolem functions provide a natural starting point for approximations, even though the Skolem
constant that arises directly from Skolemization is usually more precise than we want. From
the starting point in Figure 8.1, however, we can define approximations simply by instantiating
the Skolem constant. For instance, we can equate the existentially generated destination in the
conclusion with the one given in the premise (letting fm = AX. AL AM.AR. M). The result is
equivalent to this specification:

push: hd L M » left X M R >-> {stack X L M * hd M R}.
pop: stack X L Ml % hd M1 M2 % right X M2 R >-> {hd L R}.

This substitution yields a precise approximation that exactly captures the behavior of the original
PDA as a saturating logic program.

To be concrete about what this means, let us recall how the PDA works and what it means
for it to accept a string. To use the linear PDA specification in Figure 7.2, we encode a string as
a sequence of linear atomic propositions ptok, ... ptok,, where each ptok, either has the form
left tok; d; d;1 or the form right tok; d; d; ;. The term tok; that indicates whether we’re talking
about a left/right parenthesis, curly brace, square brace, etc., and d . . . d,, ;1 are n + 2 constants
of type dest.! Let A = (h:(hddod,) eph,x1:(ptok,) eph, ..., x,:(ptok,) eph). The PDA ac-
cepts the string encoded as ptok, ... ptok, if and only if there is a trace under the signature in
Figure 7.2 where A ~* (U’; x:(hddo d,11) eph).

Now, say that we turn the predicates persistent and run the program described by the push
and pop rules above as a saturating logic program, obtaining a saturated process state A,; from
the initial process state (h:(hd dydy) pers, z1:(ptok,) pers, ..., x,:(ptok,) pers). (We can see
from the structure of the program that LF context will remain empty.) The meta-approximation
theorem ensures that, if the original PDA accepted, then the proposition hd dg d,, ;1 is in A,y It
just so happens to be the case that the converse is also true — if hd dy d,, ;1 is in A, the original
PDA specification accepts the string. That is why we say we have a precise approximation.

On the other hand, if we set m equal to [ (letting fm = AX. AL AM.AR. L), the result is
equivalent to this specification:

push: hd L M % left X M R >> {stack X L, L » hd L R}.
pop: stack X L Ml % hd M1 M2 x right X M2 R >-> {hd L R}.

If the initial process state contains a single atomic proposition hd dy d; in addition to all the left
and right facts, then the two rules above maintain the invariant that, as new facts are derived, the
first argument of hd and the second and third arguments of stack will always be dy. These argu-
ments are therefore vestigial, like the extra arguments to eval and retn discussed in Section 7.1.1,
and we can remove them from the approximate specification, resulting in the specification in
Figure 8.2.

"We previously saw destinations as only inhabited by parameters, but the guarantees given by the meta-
approximation theorem are clearer when the initial state contains destinations that are constants.
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hd: dest -> prop pers.

left: tok —-> dest -> dest -> prop pers.
right: tok -> dest -> dest -> prop pers.
stack: tok —-> prop pers.

push: hd M % left X M R >-> {stack X % hd R}.
pop: stack X x hd M2 % right X M2 R >-> {hd R}.

Figure 8.2: Approximated PDA specification

This logical approximation of the original PDA accepts if we run saturating logic program-
ming from the initial process state (h:(hdd;) pers,zq:(ptok,) pers, ..., x,:(ptok,) pers) and
hd d,, ;1 appears in the saturated process state. Again, the meta-approximation theorem ensures
that any string accepted by the original PDA will also be accepted by any approximation. This
approximation will additionally accept every string where, for every form of bracket tok, at least
one left tok appears before any of the right tok. The string [ ]]] ( () would be accepted by this
approximated PDA, but the string ( ) ] [ [ ] would not, as the first right square bracket appears
before any left square bracket.

8.3 Logical transformation: approximation

The approximation strategy demonstrated in the previous section is quite simple: a signature in
an ordered or linear logical specification can be approximated by making all atomic propositions
persistent, and a flat rule VZ. At — {B"} containing only persistent atomic propositions can
be further approximated by removing premises from A" and adding conclusions to B*. Of
particular practical importance are added conclusions that neutralize an existential quantification
with a notational definition. The approximation procedure doesn’t force us to neutralize all
such variables in this way. However, as we explained above, failing to do so almost ensures
that the specification cannot be run as a saturating logic program, and being able to interpret
specifications as saturating logic programs is a prerequisite for applying the meta-approximation
theorem (Theorem 8.4).

First, we define what it means for a specification to be an approximate version of another
specification:

Definition 8.1. A flat, concurrent, and persistent specification ., is an approximate version
of another specification 3. if every predicate a : Ilx .1y ...1lx,:7,. prop vl declared in 3. has a
corresponding predicate a : 1lx 1y ... Ilx,,:7,. prop pers in X, and if for every ruler : V. Af —
{AJ} in X there is a corresponding rule r : V7. B — {By } in 3, such that:

+ The existential quantifiers in AT and A are identical to the existential quantifiers in B}

and By (respectively),
x For each premise ( p;m ort = s)in B, the same premise appears in A}, and
x For each conclusion (p;, ort = s) in Ay, the same premise appears in By .
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While approximation is a program transformation, it is not a deterministic one: Definition 8.1
describes a whole family of potential approximations. Even the nondeterministic operationaliza-
tion transformation was just a bit nondeterministic, giving several options for operationalizing
any given deductive rule. The approximation transformation, in contrast, needs explicit infor-
mation from the user: which premises should be removed, and what new conclusions should be
introduced? While there is value in actually implementing the operationalization, defunction-
alization, and destination-adding transformations, applying approximation requires intelligence.
Borrowing a phrase from Danvy, approximation is a candidate for “mechanization by graduate
student” rather than mechanization by computer.

Next, we give a definition of what it means for a state to be an approximate version (we use
the word “generalization”) of another state or a family of states.

Definition 8.2. The persistent process state (V,; A,) is a generalization of the process state
(U; A) if there is a substitution U, = o : U such that, for all atomic propositions p};, = at; .. .1,
in A, there exists a persistent proposition p;.,.. = a(ot1)...(ct,) in A,

One thing we might prove about the relationship between process states and their generaliza-
tions is that generalizations can simulate the process states they generalize: thatis, if (U ; Ay)isa
generalization of (V; A) and (U5 A) ~x (U'; A') then (Wy; Ay) ~x, (V)5 A7) where (W) ; A7)
is a generalization of (U’; A’). This property, one-step simulation, is true [SP11, Lemma 6], and
we will prove it as a corollary on the way to the proof of Theorem 8.4. However, we are not
interested in generalization per se; rather, we’re interested in a stronger property, abstraction,
that is defined in terms of generalization:

Definition 8.3. A process state (V,; A,) is an abstraction of (Vy; Ag) under the signature X if,
Sor any trace (Wo; Ag) ~% (Vo Ay), (Wo; A,) is a generalization of (V,,; A,,).

An abstraction of the process state (Vg; Ag) is therefore a single process state that cap-
tures all possible future behaviors of the state (Vo; Ay) because, for any atomic proposition
pl, = ati...t, that may be derived by evolving (¥y; Ag), there is a substitution o such that
a(oty)...(ot,) is already present in the abstraction. The meta-approximation theorem relates
this definition of abstraction to the concept of approximate versions of programs as specified by
Definition 8.1.

Theorem 8.4 (Meta-approximation). If >, is an approximate version of Y, and if there is a
state (Wo; Ag) well-formed according to ¥, and if for some V, &= o : W, there is a trace
(Vo 0A0) ~35, (Va3 Ay) such that (Vo3 A,) is a saturated process state, then (Vo5 A,) is an
abstraction of (Vo; Ay).

Proof. The central lemma is one-step simulation, mentioned above, which is established by in-
duction on the structure of the step. A multi-step simulation lemma immediately follows by
induction on traces: If 3, is an approximate version of 2, (¥,; A,) is a generalization of (U; A)
and (VU; A) ~5 (U5 AY) then (Vg5 Ay) ~5 (V) A)) where (W); A7) is a generalization of
(¥'; A) [SP11, Lemma 7].
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The monotonicity lemma establishes that transitions in a purely-persistent specification only
increase the generality of a process state: if (U; A) ~% (U’; A’) and X defines no ordered or
mobile predicates, then (U’; A’) is a generalization of (¥; A) [SP11, Lemma 8].

We use the monotonicity lemma to prove the saturation lemma: if (V; A) ~3% (Vg Ag), &
defines no ordered or mobile predicates, and (V¥y; A,) is saturated, then whenever (¥; A) ~3
(U5 A”) (Wy; Ay) is a generalization of (U'; A’). The proof proceeds by induction on the last
steps of the trace witnessing (U; A) ~% (W5 A).

* In the base case, (V; A) = (¥’; A’) and we appeal to monotonicity.

« In the inductive case, we have (¥; A) ~§ (U”; A”) ~y5 (U; A’). By the induction hy-
pothesis we have that (Vg; A) is a generalization of (¥”; A”), and by one-step simulation
(Us; Ag) ~ox (UL AL) such that (U!; A%) is a generalization of (V’; A’). But saturation
means that U; = U’ and that all the propositions in A/, already appear in Ag, so (Vg; A;)
must be a generalization of (¥'; A’) as well. [SP11, Lemma 9]

Finally, we prove meta-approximation. Consider a trace (Vo;Ag) ~3% (V,;A,) of the
original program. By the simulation lemma, there is a trace (Wo;0Ag) ~3,  (¥7,; A7) where
(W Al) is a generalization of (¥,,; A,,). By the saturation lemma, (¥,; A,) is a generalization
of (U ; A), and so because generalization is transitive, (V,; A,) is a generalization of (¥o; Ay),
which is what we needed to show [SP11, Theorem 3]. O]

The meaning of the meta-approximation theorem is that if (1) we can approximate a specifi-
cation and an initial state and (2) we can obtain a saturated process state from that approximate
specification and approximate initial state, then the saturated process state captures all possible
future behaviors of the (non-approximate) initial state.

8.4 Control flow analysis

The initial process state for destination-passing SSOS specifications generally has the form
(d:dest; x:(eval t d)) for some program represented by the LF term ¢ = "e”. This means that
we can use the meta-approximation result to derive abstractions from initial expressions e using
the saturating logic programming interpretation of approximated SSOS specifications.

A control flow analysis is a fundamental analysis on functional programs, attributed to Shiv-
ers [Shi88]. It is used for taking an expression and “determining for each subexpression a hope-
fully small number of functions that it may evaluate to; thereby it will determine where the flow
of control may be transferred to in the case where the subexpression is the operator of a function
application” [NNHOS, p. 142]. That is, we want to take a program and find, for every subex-
pression e of that unevaluated program, all the values v that the subexpression may evaluate to
over the course of evaluating the program to a value. Because we are talking about subexpres-
sions of the unevaluated program, the answer might not be unique. Consider the evaluation of
Ao (fy.)) oo (f (A=) ...) (Az.z). The function \x.z gets bound to f and therefore
may get called twice, once with the argument (\y .. .) and once with the argument (\z...). The
subexpression = of \z.x can therefore evaluate to (A\y...) in the context of the call f (\y...)
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and to (\z...) in the context of the call f (Az...). As a may-analysis, the output of a control
flow analysis is required to report both of these possibilities.

When we use a control flow analysis, it is relevant that the calculation of which subexpres-
sions evaluate to which values is done in service of a different goal: namely, determining which
functions may be called from which calling sites. However, the ultimate goal of control flow anal-
ysis is irrelevant to our discussion of deriving control flow analyses from SSOS specifications,
so we will concentrate on the question of which subexpressions evaluate to which values. Before
we begin, however, we will address the issue of what it even means to be a (closed) subterm of
an expression e that has been encoded with higher-order abstract syntax into the canonical forms
of LF.

8.4.1 Subexpressions in higher-order abstract syntax

When given a term a (bcc), it is clear that there are three distinct subterms: the entire term,
bcc, and c. Therefore, it is meaningful to bound the size of a saturated process state using
some function that depends on the number of subterms of the original term. But what are the
subterms of lam (A\z. app x =), and how can we write a saturating logic program that derives all
those subterms? The rule for application is easy:

sub/app : Vej:exp. Ves:exp. subterms(app e e5) — {subtermse; @ subterms e, }

What about the rule for lambda abstractions? Experience with LF says that, when we open up
a binder, we should substitute a fresh variable into that binder. This would correspond to the
following rule:

sub/lam/ohno : Ve:exp — exp.subterms(lam(A\z.e x)) — {Jx. subterms(e x)}

The rule sub/lam/ohno will, as we have discussed, lead to nontermination when we interpret
the rules as a saturating logic program. The solution is to apply Skolemization as described in
Section 8.2, which introduces a new constant we will call var. The rule sub/lam/ohono can then
be approximated as a terminating rule:

sub/lam : Ve:exp — exp. subterms(lam(Az.e x)) — {subterms(e(var(Az.cx)))}

The subterms of any closed term e of LF type exp can then be enumerated by running this sat-
urating logic program starting with the fact subterms(e), where subterms is a persistent positive
proposition. We start counting subterms from the outside, and stop when we reach a variable rep-
resented by a term var(Az.¢). The logic program and discussion above imply that there are three
distinct subterms of lam (A\x. app x 2): the entire term, app (var(Az.appx x)) (var(Az. appx z)),
and var(Az. app x x).

Another solution, discussed in the next section, is to uniquely tag the lambda expression
with a label. This has the same effect of allowing us to associate the variable = with a different
concrete term, the tag, that represents the site where = was bound.

2This statement assumes that both of the calling sites f (\y...) and f (\z...) are reachable: the control flow
analysis we derive performs some dead-code analysis, and it may not report that 2: evaluates to (\y . . .), for instance,
if the call f (\y...) is certain to never occur.
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bind: exp —-> exp —-> prop pers.
eval: exp —-> dest -> prop lin.
retn: exp —> dest —-> prop lin.
cont: frame -> dest -> dest —-> prop lin.

ev/bind: eval X D x !bind X V >-> {retn V D}.
ev/lam: eval (lam \x. E x) D >> {retn (lam \x. E x) D}.

ev/app: eval (app E1 E2) D
>-> {Exists dl. eval E1 dl *x cont (appl E2) dl D}.

ev/appl: retn (lam \x. E x) D1 * cont (appl E2) D1 D
>-> {Exists d2. eval E2 d2 * cont (app2 \x. E x) d2 D}.

ev/app2: retn V2 D2 x cont (app2 \x. E x) D2 D
>—> {Exists x. !bind x V =*
Exists d3. eval (E x) d3 = cont app3 d3 D}.

ev/app3: retn V D3 % cont app3 D3 D >-> {retn V D}.

Figure 8.3: Alternative environment semantics for CBV evaluation

8.4.2 Environment semantics

The starting point for deriving a control flow analysis is the environment semantics for call-by-
value shown in Figure 8.3. It differs from the environment semantics shown in Figure 6.19 in
three ways. First and foremost, it is a destination-passing specification instead of an ordered
abstract machine specification, but that difference is accounted for by the destination-adding
transformation in Chapter 7. A second difference is that the existentially generated parame-
ter = associated with the persistent proposition bind x v is introduced as late as possible in the
multi-stage protocol for evaluating an application (rule ev/app2 in Figure 8.3), not as early as
possible (rule ev/appenvl in Figure 6.19). The third difference is that there is an extra frame
app3 and an extra rule ev/app3 that consumes such frames. The app3 frame is an important part
of the control flow analysis we derive, but in [SP11] the addition of these frames was otherwise
unmotivated. Based on our discussion of the logical correspondence in Chapters 5 and 6, we
now have a principled account for this extra frame and rule: it is precisely the pattern we get
from operationalizing a natural semantics without tail-recursion optimization and then applying
defunctionalization and destination-adding.

8.4.3 Approximation to 0CFA

In order for us to approximate Figure 8.3 to derive a finite control flow analysis, we turn all linear
atomic propositions persistent and then must deal with the variables introduced by existential
quantification. The variable = introduced in ev/app2 will be equated with var(Az.E x), which is
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bind: exp —-> exp —-> prop pers.
eval: exp —> exp —> pProp pers.
retn: exp —-> exp —> pProp pers.
cont: frame -> exp —-> exp —> pProp pers.

ev/bind: eval X D * bind X V >-> {retn V D}.
ev/lam: eval (lam \x. E x) D >> {retn (lam \x. E x) D}.

ev/app: eval (app E1 E2) D
>-> {Exists dl. eval E1 dl x cont (appl E2) dl D «*
dl == El1}.

ev/appl: retn (lam \x. E x) D1 » cont (appl E2) D1 D
>—> {Exists d2. eval E2 d2 * cont (app2 \x. E x) d2 D =
d2 == E2}.

ev/app2: retn V2 D2 x cont (app2 \x. E x) D2 D
>—> {Exists x. bind x V =*
Exists d3. eval (E x) d3 = cont app3 d3 D =
x == var (\x. E x) =«
d3 == E x}.

ev/app3: retn V D3 x cont app3 D3 D >-> {retn V D}.

Figure 8.4: A control-flow analysis derived from Figure 8.3

consistent with making £ = — which is now equal to £/ (var(Az.E x)) —a subterm of lam(\z. £ x).
The new constructor var is also a simplified Skolem function for = that only mentions the LF term
[; the most general Skolem function in this setting would have also been dependent on V', D,
and D,. The existentially generated variable x was also the first argument to bind, so bind, as a
relation, will now associate binding sites and values instead of unique variables and values.

The discussion above pertains to the existentially generated variable x in rule ev/app2, but
we still need some method for handling destinations d;, d», and d3 in ev/app, ev/appl, and
ev/app2 (respectively). To this end, we need recall the question that we intend to answer with
control flow analysis: what values may a given subexpression evaluate to? A destination passing
specification attempts to return a value to a destination: we will instead return fo an expression
by equating destinations d with the expressions they represent. One way to do this would be to
introduce a new constructor d : exp — dest, but we can equivalently conflate the two types exp
and dest to get the specification in Figure 8.4.

The specification in Figure 8.4 has a point of redundancy along the lines of the redundancy
in our second PDA approximation: the rules maintain the invariants that the two arguments to
eval e d are always the same. Therefore, the second argument to eval can be treated as vestigial;
by removing that argument, we get a specification equivalent to Figure 8.5. That figure includes
another simplifications as well: instead of introducing expressions d, ds, and d3 by existential
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bind: exp —-> exp —-> prop pers.

eval: exp —-> prop pers.

retn: exp —-> exp —> pProp pers.

cont: frame -> exp —-> exp —> pProp pers.

ev/bind: eval X % bind X V >-> {retn V X}.
ev/lam: eval (lam \x. E x) >-> {retn (lam \x. E x) (lam \x. E x)}.

ev/app: eval (app El1 E2)  E == app El E2
>-> {eval E1 * cont (appl E2) E1 E}.

ev/appl: retn (lam \x. EO0O x) El1 * cont (appl E2) El1 E
>-> {eval E2 x cont (app2 \x. EO x) E2 E}.

ev/app2: retn V2 E2 x cont (app2 \x. E0 x) E2 E
>—> {Exists x. bind x V =*
eval (EO x) * cont app3 (E0 x) E *
x == var (\x. EO0 x)}.

ev/app3: retn V E3 x cont app3 E3 E >-> {retn V E}.

Figure 8.5: Simplification of Figure 8.4 that eliminates the vestigial argument to eval

quantification just to equate them with expressions e;, €5, and e, we substitute in the equated
expressions where the respective destinations appeared in Figure 8.4; this modification does not
change anything at the level of synthetic inference rules.

Let’s consider the termination of specification in Figure 8.5 interpreted as a saturating logic
program. Fundamentally, the terms in the heads of rules are all subterms (in the generalized
sense of Section 8.4.1), which is a sufficient condition for the termination of a saturating logic
program. More specifically, consider that we start the database with a single fact eval " ¢!, where
"e Thas n subterms by the analysis in Section 8.4.1. We can only ever derive n new facts eval e —
one for every subterm. If we deduced that every subexpression was a value that could be returned
at every subexpression, there would still be only n? facts retn e ¢/, and the same analysis holds for
facts of the form contapp3e¢’. A fact of the form cont (appl es) e; e will only be derived when
e = app e e, so there are at most n of these facts. A fact of the form cont (app2 A\z.¢px) es e
will only be derived when e = appe; e; for some e; that is also a subterm, so there are most
n? of these facts too. This means that we can derive no more than 2n + 3n? facts starting from
a database containing eval "¢, where e has n subterms. We could give a much more precise
analysis than this, but this imprecise analysis certainly bounds the size of the database, ensuring
termination, which was our goal.

There is one important caveat to the control flow analysis we have derived. If for some value
v we consider the program " ((Az.z) (Ay.y)) v™, we might expect a reasonable control flow anal-
ysis to notice that only " Ay.y ' is passed to the function " Ax.x " and that only v is passed to
the function " Ay.y . Because of our use of higher-order abstract syntax, however, " \y.y ' and
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"Az.x ! are a-equivalent and therefore equal in the eyes of the logic programming interpreter.
This is not a problem with correctness, but it means that our analysis may be less precise than
expected, because the analysis distinguishes only subterms, not subterm occurrences. One solu-
tion would be to add distinct labels to terms, marking the a-equivalent \z.x and \y.y with their
distinct positions in the overall term. Adding a label on the inside of every lambda-abstraction
would seem to suffice, and in any real example labels would already be present in the form of
source-code positions or line numbers. The alias analysis presented in the next section demon-
strates the use of such labels.

8.4.4 Correctness

The termination analysis for the derived specification in Figure 8.5, together with the meta-
approximation theorem (Theorem 8.4), ensures that we have derived some sort of program anal-
ysis. How do we know that it is a control flow analysis?

The easy option is to simply inspect the analysis and compare it to the behavior of the SSOS
semantics whose behavior the analysis is approximating. Note that the third argument ¢ to
cont f ¢’ e is always a term app e e; — that is, a call site. The rule ev/app2 starts evaluating
the function lam(\z.¢ ) and generates the fact cont app3 (e(var(Az.eg ))) e. This means that,
in the course of evaluating some initial expression ¢;,,;;, the function lam(Az.ey x) may be called
from the call site e only if cont app3 (eg(var(Az.ep x))) e appears in a saturated process state that
includes the persistent atomic proposition eval(e;,;; ).

The analysis above is a bit informal, however. Followir}\g Nielson et al., an acceptable control
flow analysis takes the form of two functions. The first, C, is a function from expressions e to
sets of values {vy,...,v,}, and the second, p, is a function from variables = to sets of values
{v1,..., 0.} C and p are said to represent an acceptable control flow analysis for the expression
e if a coinductively defined judgment (E, p) [ e holds.

We would like to interpret a saturated program state A as a (potentially acceptable) control
flow analysis as follows (keeping in mind that, given our current interpretation of subterms,
Fox7 = var(Az. E x) for some £):

x C(e) = {v | retn™v17e7}, and

x p(z) ={v|bind"27 0T}

Directly adapting Nielson et al.’s definition of an acceptable control flow analysis from [NNHOS5,
Table 3.1] turns out not to work. The control flow analysis we derived in Figure 8.5 is rather
sensitive to non-termination: if we let w = (Az.zz) (Az.z x), then our derived control flow
analysis will not analyze the argument e, in an expression w eo, nor will it analyze the function
body e in an expression (Ax.¢) w. Nielson et al.’s definition, on the other hand, demands that
both €5 in w e, and e in (Az.e) w be analyzed. In Exercise 3.4, of their book, Nielson et al. point
out that a modified analysis, which takes order of evaluation into account, is possible.

We can carry out Nielson et al.’s Exercise 3.4 to get the definition of an acceptable control
flow analysis given in Figure 8.6. Relative to this definition, it is possible to prove that the
abstractions computed by the derived SLS specification in Figure 8.5 are acceptable control flow
analyses.
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o] (Cp) o iff po) S Clo)
[lam] (C,p) E Ax.e iff {(Az.e)} C C(\x.e)
[app] (C,P) = e ey iff

(C.P) Een
(V(Az.e) € Cley) :

ChEen

Figure 8.6: Coinductive definition of an acceptable control flow analysis

Theorem 8.5. If A is a saturated process state that is well-formed according to the signature
in Figure 8.5, and if C and p are defined in terms of A as described above, then eval"c¢' € A
implies that (C, p) = e.

Proof. By coinduction on the definition of acceptability in Figure 8.6, and case analysis on the
form of e.

—e=ux,80"e' =" =var(\x. By x)
We have to show p(x) C E(x) In other words, if bind"2 "0 € A, thenretn"v "2 €
A. Because eval "¢ € A, this follows by the presence of rule ev/bind —if eval "¢ € A
and bind"z "0 € A, then retn"v "2 € A as well; if it were not, the process state
would not be saturated!

—e=MXr.e,s0"e!' =" hx.eg! = lam(Az. Ey x)
We have to show {(Az.e)} C C(Az.e). In other words, retn " Az.e"Az.e™ € A. This
follows by rule ev/lam by the same reasoning given above.

—e=e¢e1e9,80 " e'="Tej ey =app Fy Es R

We have to show several things. The first, that (C, p) = e;, follows from the coinduction
hypothesis — by rule ev/app, eval "e; ' € A. That rule also allows us to conclude that
contapplTes 'Te; e e € Al

Second, given a (Az.co) € C(e1) (meaning retn™Az.co e, 7 € A) we have to show that
(E, p) = eo. This follows from the coinduction hypothesis: by rule ev/appl, because
retn " A\z.ep'Te; ' € A and cont (applTes ) Tep ey e € A, eval Tey T € AL This same
reasoning allows us to conclude that cont (app2 (Az."Teg 7)) Tes 'Tepea ' € A given that
(Az.eo) € C(en).
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Third, given a (Ax.ey) € E(el), we have to show that (E(eg) C p(x)): in other words,
that retn"vy, ey € A implies bind (var(Az.Tep ")) Tuy ' € A. Because we know by
the reasoning above that cont (app2 (Ax.Tep ")) Tes 1Tejes !’ € A, this follows by rule

ev/app2.

The same reasoning from ev/app2 allows us to conclude that both (\z.ey) € E(el) and
retn"vy 'Tey ' € A together imply eval "¢y € A (and therefore that (E,ﬁ) = ey by
the coinduction hypothesis, the fourth thing we needed to prove) in addition to implying
contapp3Tey ey s’ € A (which with ev/app3 implies C(ey) C C(e; e3), the last thing
we needed to prove).

This completes the proof. []

We claim that, if we had started with an analysis that incorporated both parallel evaluation
of functions and arguments (in the style of Figure 7.6 from Section 7.2.1) and the call-by-future
functions discussed in Figure 7.9 from Section 7.2.3, then the derived analysis would have sat-
isfied a faithful representation of Nielson et al.’s acceptability relation. The proof, in this case,
should proceed along the same lines as the proof of Theorem 8.5.

8.5 Alias analysis

The control flow analysis above was derived from the SSOS specification of a language that
looked much like the Mini-ML-like languages considered in Chapters 6 and 7, and we described
how to justify such an analysis in terms of coinductive specifications of what comprises a well-
designed control flow analysis.

In this section, we work in the other direction: the starting point for this specification was
the interprocedural object-oriented alias analysis presented as a saturating logic program in
[ALSUO7, Chapter 12.4]. We then worked backwards to get a SSOS semantics that allowed
us to derive Aho et al.’s logic program as closely as possible. The result is a monadic SSOS
semantics. There should not be any obstacle to deriving an alias analysis from a semantics that
looks more like the specifications elsewhere in this dissertation.

8.5.1 Monadic language

The language we consider differentiates atomic actions, which we will call expressions (and
encode in the LF type exp) and procedures or commands (which we encode in the LF type
cmd). There are only two commands m in our monadic language. The first command, ret x, is a
command that returns the value bound to the variable « (rule ev/ret in Figure 8.7). The second
command, "bnd' z +— einm 7 = bnd [ "eT \z."m7, evaluates e to a value, binds that value to the
variable x, and then evaluates . Note the presence of [ in the bind syntax; we will call it a label,
and we can think of it as a line number or source-code position from the original program.

In the previous languages we have considered, values v were a syntactic refinement of the
expressions e. In contrast, our monadic language will differentiate the two: there are five ex-
pression forms and three values that we will consider. An expression " Ax.my ' = fun Ax."mg!
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bind: variable -> value —-> prop pers.
eval: cmd -> dest -> prop lin.

retn: value -> dest -> prop lin.

cont: frame -> dest -> dest —-> prop lin.

ev/ret: eval (ret X) D % !bind X V >-> {retn V D}.

ev/fun: eval (bnd L (fun \x. MO x) (\x. M x)) D
>-> {Exists y. eval (M y) D * !bind y (lam L \x. MO x)}.

ev/call: eval (bnd L (call F X) (\x. M x)) D =
'bind F (lam LO (\x. MO x)) =
'bind X V
>-> {Exists dO0. Exists y.
eval (MO y) dO0 % cont (calll L (\x. M x)) dO D =«
'bind y V}.

ev/calll: retn V DO * cont (calll L (\x. M x)) DO D
>-> {Exists y. eval (M y) D % !bind y V}.

Figure 8.7: Semantics of functions in the simple monadic language

evaluates to a value "\ az.my™ = lam Az."m,", where the label [ represents the source code
position where the function was bound. (A function value is a command m, with one free vari-
able.) When we evaluate the command "bnd’ y <+ \x.mginm7, the value "\'a.m,™ gets bound
to y in the body of the command m (rule ev/fun in Figure 8.7).

The second expression form is a function call: " f ' = app f 2. To evaluate a function
call, we expect a function value to be bound to the variable f; we then store the rest of the
current command on the stack and evaluate the command m to a value. Note that the rule
ev/call in Figure 8.7 also stores the call site’s source-code location [ on the stack frame. The
reason for storing a label here is that we need it for the alias analysis. However, it is possible
to independently motivate adding these source-code positions to the operational semantics: for
instance, it would allow us to model the process of giving a stack trace when an exception is
raised. When the function we have called returns (rule ev/calll in Figure 8.7), we continue
evaluating the command that was stored on the control stack.

The rules for mutable pairs are given in Figure 8.8. Evaluating the expression newpair allo-
cates a tuple with two fields fst and snd and yields a value loc [ referring to the tuple; both fields
in the tuple are initialized to the value null, and each field is represented by a separate linear cell
resource (rule ev/new). The expressions "z.fst™ = projx fst and "z.snd™ = proj x snd expect a
pair location to be bound to x, and yield the value stored in the appropriate field of the mutable
pair (rule ev/proj). The expressions "z.fst := y ' = setxfsty and "z.snd := 7 = setxsndy
work much the same way. The difference is that the former expressions do not change the ac-
cessed field’s contents, whereas the latter expressions replace the accessed field’s contents with
the value bound to y (rule ev/set).

This language specification bears some similarity to Harper’s Modernized Algol with free
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cell: locvar —-> field -> value —-> prop lin.

ev/new: eval (bnd L newpair (\x. M x)) D
>-> {Exists y. Exists 1’. eval (M y) D =
cell 17 fst null % cell 1’ snd null =
'bind y (loc 17)}.

ev/proj: eval (bnd L (proj X Fld) (\x. M x)) D =*
'bind X (loc L’) =«
cell L' F1d V
>-> {Exists y. eval (M y) D % cell L' Fl1d V =
'bind y V}.

ev/set: eval (bnd L (set X F1d Y) (\x. M x)) D =
'bind X (loc L’) =
'bind Y V «*
cell L’ Fld V’
>-> {Exists y. eval (M y) D *
cell L’ Fld V *
'bind y V'}.

Figure 8.8: Semantics of mutable pairs in the simple monadic language

assignables [Har12, Chapter 36]. The free assignables addendum is critical: SSOS specifications
do not have a mechanism for enforcing the stack discipline of Algol-like languages.?

8.5.2 Approximation and alias analysis

To approximate the semantics of our monadic language, we can follow the methodology from
before and turn the specification persistent. A further approximation is to remove the last premise
from ev/set, as the meta-approximation theorem allows — the only purpose of this premise in
Figure 8.8 was to consume the ephemeral proposition cell I’ fid v, and this is unnecessary if cell
is not an ephemeral predicate. Having made these two moves (turning all propositions persistent,
and removing a premise from ev/set), we are left with three types of existentially-generated
variables that must be equated with concrete terms in order for our semantics to be interpreted as
a saturating logic program:

* Variables v, introduced by every rule except for ev/ret,
« Mutable locations [, introduced by rule ev/new, and

x Destinations d; the only place where a destination is created by the destination-adding
transformation is in rule ev/call.

31t is, however, possible to represent Algol-like languages that maintain a stack discipline even though the ma-
chinery of SLS does not enforce that stack discipline. This is analogous to the situation with pointer equality
discussed in Section 6.5.1, as a stack discipline is an invariant that can be maintained in SLS even though the
framework’s proof theory does not enforce the invariant.
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value —-> prop pers.

cmd -> label -> prop pers.

bind: label ->
eval:

retn: value —>

cont: frame —>

cell: label —>

ev/ret: eval

ev/fun: eval

>—>

ev/call: eval

bind

bind

>—>

ev/calll: retn

>—>

ev/new: eval

>—>

ev/proj: eval

bind
cell
>—>

ev/set: eval

bind
bind
>—>

label —-> prop pers.
label -> label -> prop pers.
field -> value —-> prop pers.

(ret X) D x bind X V >-> {retn V D}.

(bnd L (fun \x. MO x) (\x. M x)) D
{eval (M L) D * bind L (lam L \x. MO x)}.

(bnd L (call F X) (\x. M x)) D =

F (lam LO \x. MO x) =

XV

{eval (MO LO) LO * cont (calll L (\x. M x)) LO D}.

V DO  cont (calll L (\x. M x)) DO D
{eval (M L) D * bind L V}.

(bnd L newpair (\x. M x)) D

{eval (M L) D =«

cell L fst null *x cell L snd null =
bind L (loc L)}.

(bnd L (proj X Fld) (\x. M x)) D =*
X (loc L’') =«

L’ F1d V

{eval (M L) D % cell L’ Fld V =«
bind L V}.

(bnd L (set X F1d Y) (\x. M x)) D =
X (loc L’') =

Y V

{feval (M L) D % cell L' Fld V «
bind L V'}.

Figure 8.9: Alias analysis for the simple monadic language
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Variables y are generated to be substituted into the body of some command, so we could
equate them with the Skolemized function body as we did when deriving a control flow analysis
example. Another option comes from noting that, for any initial source program, every command
is associated with a particular source code location, so a simpler alternative is just to equate the
variable with that source code location. This is why we stored labels on the stack: if we had not
done so, then the label [ associated with m in the command "bnd' 2 <~ \z.mg inm™ would no
longer be available when we needed it in rule ev/calll.

We deal with mutable locations / in a similar manner: we equate them with the label / repre-
senting the line where that cell was generated.

There are multiple ways to deal with the destination d;, generated in rule ev/call. We want
our analysis, like Aho et al.’s, to be insensitive to control flow, so we will equate d, with the label
lo associated with the function we are calling. If we instead equated d, with the label [ associated
with the call-site or with the pair of the call site and the called function, the result would be an
analysis that is more sensitive to control flow.

The choices described above are reflected in Figure 8.9, which takes the additional step of
inlining uses of equality in the conclusions of rules. We can invoke this specification as a program
analysis by packaging a program as a single command 1 and deriving a saturated process state
from the initial process state (/;,;;:loc; z:{eval "m™[,,;;)). The use of source-code position labels
makes the answers to some of the primary questions asked of an alias analysis quite concise. For
instance:

x Might the first component of a pair created at label |, ever reference a pair created at
label [5? Only if cell [, fst (locy) appears in the saturated process state (and likewise for
the second component).

x Might the first component of a pair created at label [, ever reference the same object
as the first component of a pair created at label 15?7 Only if there is some I’ such that
cell[; fst (loc!’) and cell [; fst (loc ") both appear in the saturated process state.

8.6 Related work

The technical aspects of linear logical approximation are similar to work done by Bozzano et
al. [BDMO02, BDMO04], which was also based on the abstract interpretation of a logical spec-
ification in linear logic. They encode distributed systems and communication protocols in a
framework that is similar to the linear fragment of SLS without equality. Abstractions of those
programs are then used to verify properties of concurrent protocols that were encoded in the logic
[BDO02].

There are a number of significant difference between our work and Bozzano et al.’s, how-
ever. The style they use to encode protocols is significantly different from any of the SSOS
specification styles presented in this dissertation. They used a general purpose approximation,
which could therefore potentially be mechanized in the same way we mechanized transforma-
tions like operationalization; in contrast, the meta-approximation result described here captures
a whole class of approximations. Furthermore, Bozzano et al.’s methods are designed to consider
properties of a system as a whole, not static analyses of individual inputs as is the case in our
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work.

Work by Might and Van Horn on abstracting abstract machines can be seen as a parallel ap-
proach to our methodology in a very different setting [MSV 10, Migl10, VM10]. Their emphasis
is on deriving a program approximation by approximating a functional abstract interpreter for a
programming language’s operational semantics. Their methodology is similar to ours in large
part because we are doing the same thing in a different setting, deriving a program approxima-
tion by approximating a destination-passing SSOS specification (which we could, in turn, have
derived from an ordered abstract machine by destination-adding).

Many of the steps that they suggest for approximating programs have close analogues in our
setting. For instance, their store-allocated bindings are analogous to the SSOS environment se-
mantics, and their store-allocated continuations — which they motivate by analogy to implemen-
tation techniques for functional languages like SML/NJ — are precisely the destinations that arise
naturally from the destination-adding transformation. The first approximation step we take is for-
getting about linearity in order to obtain a (non-terminating) persistent logical specification. This
step is comparable to Might’s first approximation step of “throwing hats on everything” (named
after the convention in abstract interpretation of denoting the abstract version of a state space -
as 3. The “mysterious” introduction of power domains that this entails is, in our setting, a per-
fectly natural result of relaxing the requirement that there be at most one persistent proposition
bind = v for every x. As a final point of comparison, the “abstract allocation strategy” discussed
in [VM10] is quite similar to our strategy of introducing and then approximating Skolem func-
tions as a means of deriving a finite approximation. Our current discussion of Skolem functions
in Section 8.4 is partially inspired by the relationship between our use of Skolemization and the
discussion of abstract allocation in [VM10].

The independent discovery of a similar set of techniques for achieving similar goals in such
different settings (though both approaches were to some degree inspired by Van Horn and Mair-
son’s investigations of the complexity of k-CFA [VMO7]) is another indication of the generality
of both techniques, and the similarity also suggests that the wide variety of approximations con-
sidered in [VM10], as well as the approximations of object-oriented programming languages in
[Mig10], can be adapted to this setting.
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