
Substructural Logical Specifications - Robert J. Simmons

Chapter 7

Destination-passing

The natural notion of ordering provided by ordered linear logic is quite convenient for encoding
evolving systems that perform local manipulations to a stack-like structure. This was demon-
strated by the push-down automaton for generic bracket matching discussed in the introduction.
We can now present that specification in Figure 7.1 as an SLS specification.

hd: prop ord.
left: tok -> prop ord.
right: tok -> prop ord.
stack: tok -> prop ord.

push: hd * left X >-> {stack X * hd}.
pop: stack X * hd * right X >-> {hd}.

Figure 7.1: Ordered SLS specification of a PDA for parenthesis matching

Tree structures were reasonably straightforward to encode in the ordered context as well, as we
saw from the SSOS specification for parallel pairs in Chapter 6.

At some point, however, the simple data structures that can be naturally encoded in an ordered
context become too limiting. When we reach this point, we turn to destinations, which allow us
to glue control flow together in much more flexible ways. Destinations (terms of type dest) are a
bit like the locations l introduced in the specification of mutable storage in Section 6.5.1. They
have no constructors: they are only introduced as variables by existential quantification, which
means they can freely be subject to unification when the conclusion of a rule declares them to be
equal (as described in Section 4.2). Destinations allow us to encode very expressive structures
in the linear context of SLS. Instead of using order to capture the local relationships between
different propositions, we use destinations.

Linear logic alone is able to express any (flat, concurrent) specifications that can be expressed
using ordered atomic propositions. In other words, we did not ever need order, it was just a more
pleasant way to capture simple control structures. We will demonstrate that fact in this chap-
ter by describing a transformation, destination-adding, from specifications with ordered atomic
propositions to specifications that only include linear and persistent atomic propositions. This
destination-adding transformation, which we originally presented in [SP11], turns all ordered

199

Substructural Logical Specifications - Robert J. Simmons

atomic propositions into linear atomic propositions and tags them with two new arguments (the
destinations of the destination-adding transformation). These extra destinations serve as a link
between a formerly-ordered atomic proposition and its two former neighbors in the ordered con-
text. When we perform the destination-adding transformation on the specification in Figure 7.1,
we get the specification in Figure 7.2.

hd: dest -> dest -> prop lin.
left: tok -> dest -> dest -> prop lin.
right: tok -> dest -> dest -> prop lin.
stack: tok -> dest -> dest -> prop lin.

push: hd L M * left X M R >-> {Exists m. stack X L m * hd m R}.
pop: stack X L M1 * hd M1 M2 * right X M2 R >-> {hd L R}.

Figure 7.2: Linear SLS specification of a PDA for parenthesis matching

The specification in Figure 7.2, like every other specification that results from destination-
adding, has no occurrences of ↓A− (the transformation has not been adapted to nested rules)
and no ordered atomic propositions (these are specifically removed by the transformation). As
a result, we write hd L M instead of $hd L M, omitting the optional linearity indicator $ on
the linear atomic propositions as discussed in Section 4.5. Additionally, by the discussion in
Section 3.7, we would be justified in viewing this specification as a linear logical specification
(or a CLF specification) instead of a ordered logical specification in SLS. This would not impact
the structure of the derivations significantly; essentially, it just means that we would write A+

1 (
{A+

2 } instead of A+
1 � {A+

2 }. This reinterpretation was used in [SP11], but we will stick with
the notation of ordered logic for consistency, while recognizing that there is nothing ordered
about specifications like the one in Figure 7.2.

When the destination-adding translation is applied to ordered abstract machine SSOS spec-
ifications, the result is a style of SSOS specification called destination-passing. Destination-
passing specifications were the original style of SSOS specification proposed in the CLF tech-
nical reports [CPWW02]. Whereas the operationalization transformation exposed the structure
of natural semantics proofs so that they could be modularly extended with stateful features, the
destination-adding translation exposes the control structure of specifications, allowing the lan-
guage to be modularly extended with control effects and effects like synchronization.

7.1 Logical transformation: destination-adding
The translation we define operates on rules the form ∀x.S1 � {S2}, where S1 must contain at
least one ordered atomic proposition. The syntactic category S is a refinement of the positive
types A+ defined by the following grammar:

S ::= p+
pers | p+

eph | p
+ | 1 | t .= s | S1 • S2 | ∃x:τ.S

The translation of a rule ∀x.S1 � {S2} is then ∀x.∀dL:dest. ∀dR:dest. JS1KdLdR � {JS2KdLdR},
where JSKdLdR is defined in Figure 7.3. It is also necessary to transform all ordered predicates with

200

Substructural Logical Specifications - Robert J. Simmons

Jp+KdLdR = a t1 . . . tn dL dR (where p+ = a t1 . . . tn)

Jp+
ephK

dL
dR

= p+
eph • dL

.
= dR

Jp+
persK

dL
dR

= p+
pers • dL

.
= dR

J1KdLdR = dL
.
= dR

Jt .= sKdLdR = t
.
= s • dL

.
= dR

JS1 • S2KdLdR = ∃dM :dest. JS1KdLdM • JS2KdMdR
J∃x:τ. SKdLdR := ∃x:τ. JSKdLdR

Figure 7.3: Destination-adding transformation

kind Π.x1:τ1 . . .Π.xn :τn. prop ord that are declared in the signature into predicates with kind
Π.x1:τ1 . . .Π.xn:τn. dest → dest → prop ord in order for the translation of an ordered atomic
proposition p+ to remain well-formed in the transformed signature.

The destination-adding translation presented here is the same as the one presented in [SP11],
except that the transformation operated on rules of the form ∀x.S1 � {S2} and ours will operate
over rules of the form ∀x.S1 � {S2}.1 As discussed in Section 6.2.2, the difference between
� and� is irrelevant in this situation. The restriction to flat specifications, on the other hand,
is an actual limitation. We conjecture that the translation presented here, and the correctness
proof presented in [SP11], would extend to nested SLS specifications. However, the detailed
correctness proofs in that work are already quite tedious (though our explicit notation for patterns
as partial derivations can simplify the proof somewhat) and the limited transformation described
by Figure 7.3 is sufficient for our purposes. Therefore, we will rely on the existing result, leaving
the correctness of a more general development for future work.

According to Figure 7.3, the rule pop in Figure 7.2 should actually be written as follows:

pop : ∀x:tok.∀l:dest.∀r:dest.

(∃m1:dest. stackx lm1 • (∃m2:dest. hdm1m2 • rightxm2 r))

� {hd l r}

The destination-adding transformation as implemented produces rules that are equivalent to the
specification in Figure 7.3 but that avoid unnecessary equalities and push existential quantifiers as
far out as possible (which includes turning existential quantifiers (∃x.A+)� B− into universal
quantifiers ∀x.A+ � B−). The result is a specification, equivalent at the level of synthetic
transitions, that looks like the one in Figure 7.2. We write the result of the destination-adding
transformation on the signature Σ as Dest(Σ).

We can consider a further simplification: is it necessary to generate a new destination m by
existential quantification in the head ∃m. stackx lm • hdmr of push in Figure 7.2? There is

1The monad {S2} did not actually appear in [SP11], and the presentation took polarity into account but was
not explicitly polarized. We are justified in reading the lax modality back in by the erasure arguments discussed in
Section 3.7.

201

Substructural Logical Specifications - Robert J. Simmons

already a destination m mentioned in the head that will be unused in the conclusion. It would,
in fact, be possible to avoid generating new destinations in the transformation of rules ∀x. S1 �
{S2} where the head S2 contains no more ordered atomic propositions than the premise S1.

We don’t perform this simplification for a number of reasons. First and foremost, the transfor-
mation described in Figure 7.3 more closely follows the previous work by Morrill, Moot, Piazza,
and van Benthem discussed in Section 5.2, and using the transformation as given simplifies the
correctness proof (Theorem 7.1). Pragmatically, the additional existential quantifiers also give
us more structure to work with when considering program abstraction in Chapter 8. Finally, if
we apply both the transformation in Figure 7.3 and a transformation that reuses destinations to
an ordered abstract machine SSOS specification, the former transformation produces results that
are more in line with existing destination-passing SSOS specifications.

To prove the correctness of destination-adding, we must describe a translation JΨ; ∆K from
process states with ordered, linear, and persistent atomic propositions to ones with only linear
and persistent atomic propositions:

JΨ; ·K = (Ψ, dL:dest; ·)
JΨ; ∆, x:〈a t1 . . . tn〉 ordK = (Ψ′, dL:dest, dR:dest; ∆′, x:〈a t1 . . . tn dL dR〉)

(where a is ordered and JΨ; ∆K = (Ψ′, dL:dest; ∆′))

JΨ; ∆, x:S ordK = (Ψ′, dL:dest, dR:dest; ∆′, x:JSKdLdR ord)

(where a is ordered and JΨ; ∆K = (Ψ′, dL:dest; ∆′))
JΨ; ∆, x:〈p+

eph〉 ephK = (Ψ′; ∆′, x:〈p+
eph〉)

(where JΨ; ∆K = (Ψ′; ∆′))
JΨ; ∆, x:〈p+

pers〉 persK = (Ψ′; ∆′, x:〈p+
pers〉)

(where JΨ; ∆K = (Ψ′; ∆′))

Theorem 7.1 (Correctness of destination-adding).
JΨ; ∆K ;Dest(Σ) (Ψl; ∆l) if and only if (Ψ; ∆) ;Σ (Ψo; ∆o) and (Ψl; ∆l) = JΨo,Ψ

′′; ∆oK
for some variable context Ψ′′ containing destinations free in the translation of ∆ but not in the
translation of ∆o.

Proof. This proof is given in detail in [SP11, Appendix A]. It involves a great deal of tedious
tracking of destinations, but the intuition behind that tedious development is reasonably straight-
forward.

First, we need to prove that a right-focused proof of Ψ; ∆ `Σ [S] implies that there is an
analogous proof of JΨ; ∆K `Dest(Σ) [JSKdLdR]. Conversely, if we can prove Ψ; ∆ `Dest(Σ) [JSKdLdR]
in right focus under then linear translation, then it is possible to reconstruct an ordered context
Ψ′; ∆′ such that JΨ′; ∆′K = Ψ; ∆ and Ψ′; ∆′ `Σ [S] by threading together the destinations from
dL to dR in ∆. Both directions are established by structural induction on the given derivation.
The critical property is that it is possible to reconstruct the ordered context from the context of
any right-focus sequent that arises during translation. Proving that property is where the flat
structure of rules is particularly helpful; the use of positive atomic propositions comes in handy
too [SP11, Lemma 1].

202

Substructural Logical Specifications - Robert J. Simmons

eval: exp -> dest -> dest -> prop lin.
retn: exp -> dest -> dest -> prop lin.
cont: frame -> dest -> dest -> prop lin.

ev/lam: eval (lam \x. E x) D’ D >-> {retn (lam \x. E x) D’ D}.

ev/app: eval (app E1 E2) D’ D
>-> {Exists d1. eval E1 D’ d1 * cont (app1 E2) d1 D}.

ev/app1: retn (lam \x. E x) D’ D1 * cont (app1 E2) D1 D
>-> {Exists d2. eval E2 D’ d2 * cont (app2 \x. E x) d2 D}.

ev/app2: retn V2 D’ D2 * cont (app2 \x. E x) D2 D
>-> {eval (E V2) D’ D}.

Figure 7.4: Translation of Figure 6.6 with vestigial destinations

Second, we need to prove that patterns can be translated in both directions: that if (Ψ; ∆) =⇒
(Ψ′; ∆o) under the original signature then P :: JΨ; ∆K =⇒ JΨ′; ∆oK under the translated signa-
ture [SP11, Lemma 4], and that if P :: JΨ; ∆K =⇒ (Ψ′; ∆l) then there exists ∆o such that
(Ψ′; ∆o) = JΨ′; ∆′′K [SP11, Lemma 5]. Both directions are again by induction over the structure
of the given pattern.

The theorem then follows directly from these two lemmas. There is a trivial induction on
spines to handle the sequence of quantifiers, but the core of a flat rule is a proposition S1 � {S2}
– we reconstruct the ordered context from the value used to prove S1, and then begin inverting
with the positive proposition S2 in the context.

If we leave off explicitly mentioning the variable context Ψ, then the trace that represents
successfully processing the string [()] with the transformed push-down automaton specification
in Figure 7.2 is as follows (we again underline hd for emphasis):

y0:〈hd d0 d1〉, x1:〈left sq d1 d2〉, x2:〈left pa d2 d3〉, x3:〈right pa d3 d4〉, x4:〈right sq d4 d5〉
; z1:〈stack sq d0 d6〉, y1:〈hd d6 d2〉, x2:〈left pa d2 d3〉, x3:〈right pa d3 d4〉, x4:〈right sq d4 d5〉
; z1:〈stack sq d0 d6〉, z2:〈stack pa d6 d7〉, y2:〈hd d7 d3〉, x3:〈right pa d3 d4〉, x4:〈right sq d4 d5〉
; z1:〈stack sq d0 d6〉, y3:〈hd d6 d4〉, x4:〈right sq d4 d5〉
; y4:〈hd d0 d5〉

One reason for leaving off the variable context Ψ in this example is that by the end it contains the
LF variables d1, d2, d3, d4, d5, d6, and d7, none of which are actually present in the substructural
context y4:〈hd d0 d5〉. We can informally think of these destinations as having been “garbage
collected,” but this notion is not supported by the formal system we described in Chapter 4.

203

Substructural Logical Specifications - Robert J. Simmons

eval: exp -> dest -> prop lin.
retn: exp -> dest -> prop lin.
cont: frame -> dest -> dest -> prop lin.

ev/lam: eval (lam \x. E x) D >-> {retn (lam \x. E x) D}.

ev/app: eval (app E1 E2) D
>-> {Exists d1. eval E1 d1 * cont (app1 E2) d1 D}.

ev/app1: retn (lam \x. E x) D1 * cont (app1 E2) D1 D
>-> {Exists d2. eval E2 d2 * cont (app2 \x. E x) d2 D}.

ev/app2: retn V2 D2 * cont (app2 \x. E x) D2 D
>-> {eval (E V2) D}.

Figure 7.5: Translation of Figure 6.6 without vestigial destinations

7.1.1 Vestigial destinations

When we apply the translation of expressions to the call-by-value lambda calculus specification
from Figure 6.6, we get the specification in Figure 7.4. Because eval and retn are always unique
and always appear at the leftmost end of this substructural context, this specification has a quirk:
the second argument to eval and retn is always d′, and the destination never changes; it is es-
sentially a vestige of the destination-adding transformation. As long as we are transforming a
sequential ordered abstract machine, we can eliminate this vestigial destination, giving us the
specification in Figure 7.5. This extra destination is not vestigial when we translate a parallel
specification, but as we discuss in Section 7.2.1, we don’t necessarily want to apply destination-
adding to parallel ordered abstract machines anyway.

7.1.2 Persistent destination passing

When we translate our PDA specification, it is actually not necessary to translate hd, left, right
and stack as linear atomic propositions. If we translate hd as a linear predicate but translate the
other predicates as persistent predicates, it will still be the case that there is always exactly one
linear atomic proposition hd dL dR in the context, at most one stackx d dL proposition with the
same destination dL, and at most one rightx dR d or leftx dR d with the same destination dR.
This means it is still the case that the PDA accepts the string if and only if there is the following
series of transitions:

(x:〈hd d0 d1〉, y1:〈leftx1 d1 d2〉, . . ., yn:〈rightxn dn dn+1〉) ;∗ (Γ, z:〈hd d0 dn+1〉)

Unlike the entirely-linear PDA specification, the final state may include some additional per-
sistent propositions, represented by Γ. Specifically, the final state contains all the original
leftx di di+1 and rightx di di+1 propositions along with all the stackx d d′ propositions that were
created during the course of evaluation.

204

Substructural Logical Specifications - Robert J. Simmons

I originally conjectured that a version of Theorem 7.1 would hold in any specification that
turned some ordered atomic propositions linear and others persistent just as long as at least one
atomic proposition in the premise of every rule remained linear after transformation. This would
have given a generic justification for turning left, right and stack persistent in Figure 7.2 and
to turning cont persistent in Figure 7.5. However, that condition is not strong enough. To see
why, consider a signature with one rule, a • b • a � {b}, where a and b are ordered atomic
propositions. We can construct the following trace:

(x1:〈a〉, x2:〈b〉, x3:〈a〉, x4:〈b〉, x5:〈a〉) ; (x:〈b〉, x4:〈b〉, x5:〈a〉) 6;

From the same starting point, exactly one other trace is possible:

(x1:〈a〉, x2:〈b〉, x3:〈a〉, x4:〈b〉, x5:〈a〉) ; (x1:〈a〉, x2:〈b〉, x:〈b〉) 6;

However, if we perform the destination-passing transformation, letting a d d′ be a persistent
atomic proposition and letting b d d′ be a linear atomic proposition, then we have a series of
transitions in the transformed specification that can reuse the atomic proposition a d2 d3 in a way
that doesn’t correspond to any series of transitions in ordered logic:

x1:〈a d0 d1〉 pers , x2:〈b d1 d2〉 eph, x3:〈a d2 d3〉 pers , x4:〈b d3 d4〉 eph, x5:〈a d4 d5〉 pers
; x1:〈a d0 d1〉 pers , x:〈b d0 d3〉 eph, x3:〈a d2 d3〉 pers , x4:〈b d3 d4〉 eph, x5:〈a d4 d5〉 pers
; x1:〈a d0 d1〉 pers , x:〈b d0 d3〉 eph, x3:〈a d2 d3〉 pers , x′:〈b d2 d5〉 eph, x5:〈a d4 d5〉 pers

In the first process state, there is a path d0, d1, d2, d3, d4, d5 through the context that reconstructs
the ordering in the original ordered context. In the second process state, there is still a path
d0, d3, d4, d5 that allows us to reconstruct the ordered context (x:〈b〉, x4:〈b〉, x5:〈a〉) by ignoring
the persistent propositions associated with x1 and x3. However, in the third process state above,
no path exists, so the final state cannot be reconstructed as any ordered context.

It would be good to identify a condition that allowed us to selectively turn some ordered
propositions persistent when destination-adding without violating (a version of) Theorem 7.1.
In the absence of such a generic condition, it is still straightforward to see that performing
destination-passing and then turning some propositions persistent is an abstraction: if the origi-
nal system can make a series of transitions, the transformed system can simulate those transitions,
but the reverse may not be true. In any case, we can observe that, for many of systems we are
interested in, a partially-persistent destination-passing specification can only make transitions
that were possible in the ordered specification. The push-down automata with persistent stack,
left, and right is one example of this, and we can similarly make the cont predicate persistent in
SSOS specifications without introducing any new transitions. Turing the cont predicate persis-
tent will be necessary for the discussion of first-class continuations in Section 7.2.4.

7.2 Exploring the richer fragment
In [SP11], we were interested in exact logical correspondence between ordered abstract machine
SSOS specifications and destination-passing SSOS specifications. (Destination-adding is use-
ful in that context because it exposes information about the control structure of computations;

205

Substructural Logical Specifications - Robert J. Simmons

cont2: frame -> dest -> dest -> dest -> prop lin.

ev/pair: eval (pair E1 E2) D
>-> {Exists d1. Exists d2.

eval E1 d1 * eval E2 d2 * cont2 pair1 d1 d2 D}.

ev/pair1: retn V1 D1 * retn V2 D2 * cont2 pair1 D1 D2 D
>-> {retn (pair V1 V2) D}.

Figure 7.6: Destination-passing semantics for parallel evaluation of pairs

this control structure can be harnessed by the program abstraction methodology described in
Chapter 8 to derive program analyses.) In keeping with our broader use of the logical correspon-
dence, this section will cover programming language features that are not easily expressible with
ordered abstract machine SSOS specifications but that can be easily expressed with destination-
passing SSOS specifications. Consequently, these are features that can be modularly added to
(sequential) ordered abstract machine specifications that have undergone the destination-adding
transformation.

The semantics of parallelism and failure presented in Section 7.2.1 are new. The semantics
of futures (Section 7.2.3) and synchronization (Section 7.2.2) are based on the specifications first
presented in the CLF tech report [CPWW02]. The semantics of first-class continuations (Sec-
tion 7.2.4) were presented previously in [Pfe04, PS09]. In destination-passing semantics, when
we are dealing with fine-grained issues of control flow, the interaction of programming language
features becomes more delicate. Parallel evaluation, recoverable failure, and synchronization are
compatible features, as are synchronization and futures. Failure and first-class continuations are
also compatible. We will not handle other interactions, though it would be interesting to explore
the adaptation of Moreau and Ribbens’ abstract machine for Scheme with parallel evaluation and
callcc as a substructural operational semantics [MR96].

7.2.1 Alternative semantics for parallelism and failure

In Section 6.5.4, we discussed how parallel evaluation and recoverable failure can be combined
in an ordered abstract machine SSOS specification. Due to the fact that the two parts of a parallel
ordered abstract machine are separated by an arbitrary amount of ordered context, some poten-
tially desirable ways of integrating parallelism and failure were difficult or impossible to express,
however.

Once we transition to destination-passing SSOS specifications, it is possible to give a more
direct semantics to parallel evaluation that better facilitates talking about failure. Instead of hav-
ing the stack frame associated with parallel pairs be cont pair1 (as in Figure 6.8) or cont2 pair1 (as
discussed in Section 6.5.4), we create a continuation cont2 pair1 d1 d2 d with three destinations;
d1 and d2 represent the return destinations for the two subcomputations, whereas d represents
the destination to which the evaluated pair is to be returned. This strategy applied to the parallel
evaluation of pairs is shown in Figure 7.6.

In ordered specifications, an ordered atomic proposition can be directly connected to at most

206

Substructural Logical Specifications - Robert J. Simmons

error: dest -> prop lin.
handle: exp -> dest -> dest -> prop lin.
terminate: dest -> prop lin.

ev/fail: eval fail D >-> {error D}.
ev/error: error D’ * cont F D’ D >-> {error D}.
ev/errorL: error D1 * cont2 F D1 D2 D >-> {error D * terminate D2}.
ev/errorR: error D2 * cont2 F D1 D2 D >-> {error D * terminate D1}.

term/retn: retn V D * terminate D >-> {one}. ; Returning in vain
term/err: error D * terminate D >-> {one}. ; Failing redundantly

ev/catch: eval (catch E1 E2) D
>-> {Exists d’. eval E1 d’ * handle E2 d’ D}.

ev/catcha: retn V D’ * handle _ D’ D >-> {retn V D}.
ev/catchb: error D’ * handle E2 D’ D >-> {eval E2 D}.

Figure 7.7: Integration of parallelism and exceptions; signals failure as soon as possible

two other ordered propositions: the proposition immediately to the left in the ordered context,
and the proposition immediately to the right in the ordered context. What Figure 7.6 demon-
strates is that, with destinations, a linear proposition can be locally connected to any fixed finite
number of other propositions. (If we encode lists of destinations, this need not even be fixed!)
Whereas in ordered abstract machine specifications the parallel structure of a computation had
to be reconstructed by parsing the context in postfix, a destination-passing specification uses
destinations to thread together the treelike dependencies in the context. It would presumably
be possible to consider a different version of parallel operationalization that targeted this desir-
able form of parallel destination-passing specification specifically, but we will not present such
a transformation in this thesis.

Using destination-based parallel continuations, we give, in Figure 7.7, a semantics for recov-
erable failure that eagerly returns errors from either branch of a parallel computation. The rules
ev/errorL and ev/errorR immediately pass on errors returned to a frame where the computation
forked. Those two rules also leave behind a linear proposition terminate d that will abort the other
branch of computation if it returns successfully (rule term/retn) or with an error (rule term/err).
It would also be possible to add rules like ∀d.∀d′. cont d′ d • terminate d� {terminate d′} that
actively abort the useless branch instead of passively waiting for it to finish. (In a language with
state, this can make an observable difference in the results of computation.)

7.2.2 Synchronization
The CLF tech report gives a destination-passing presentation of nearly the full set of Concur-
rent ML primitives, omitting only negative acknowledgements [CPWW02]. We will present an
SLS version of that Concurrent ML specification as a part of the hybrid specification in Ap-
pendix B. In Figure 7.8, rather than reprising that specification, we present an extremely simple
form of synchronous communication.

207

Substructural Logical Specifications - Robert J. Simmons

ev/chan: eval (chan \c. E c) D >-> {Exists c. eval (E c) D}.

ev/send: eval (send C E) Dsend
>-> {Exists d’. eval E d’ * cont (send1 C) d’ Dsend}.

ev/send1: retn V D’ * cont (send1 C) D’ Dsend * eval (recv C) Drecv
>-> {retn unit Dsend * retn V Drecv}.

Figure 7.8: Semantics of simple synchronization

New channels are created by evaluating pchan c.eq = chanλc. peq, which introduces a new
channel (an LF term of the type channel that has no constructors) and substitutes it for the bound
variable c in e. Synchronization happens when there is both a send send c e being evaluated in
one part of the process state and a receive recv c with the same channel being evaluated in a
different part of the process state. The expression e will first evaluate to a value v (rule ev/send).
Communication is driven by rule ev/send1, which allows computation to continue in both the
sender and the receiver.

Synchronous communication introduces the possibility of deadlocks. Without synchronous
communication, the presence of a suspended atomic proposition eval e d always indicates the
possibility of some transition, and the combination of a proposition retn v d and a continuation
cont f d d′ can either immediately transition or else are permanently in a stuck state. In [PS09],
this observation motivated a classification of atomic propositions as active propositions like
eval e d that independently drive computation, passive propositions like cont f d′ d that do not
drive computation, and latent propositions like retn f d that may or may not drive computation
based on the ambient environment of passive propositions.

The specification in Figure 7.8 does not respect this classification because a proposition of
the form eval (recv c) d cannot immediately transition. We could restore this classification by
having a rule ∀c. ∀d. eval (recv c) d � {await c d} for some new passive linear predicate await
and then replacing the premise eval (recvC)D in ev/send1 with awaitC D.

Labeled transitions

Substructural operational semantics specifications retain much of the flavor of abstract machines,
in that we are usually manipulating expressions along with their continuations. In ordered spec-
ifications, continuations are connected to evaluating expressions and returning values only by
their relative positions in the ordered context; in destination-passing specifications, expressions
and values are connected to continuations by the threading of destinations.

Abstract machines are not always the most natural way to express a semantics. This observa-
tion is part of what motivated our discussion of the operationalization transformation from natural
semantics (motto: “natural” is our first name!) and our informal discussion of statefully-modular
natural semantics in Section 6.5.5. In Chapter 6, we showed that the continuation-focused per-
spective of SSOS allowed us to expose computation to the ambient state. With the example of
synchronization above, we see that destination-passing SSOS specifications also expose compu-
tations in the process state to other computations, which is what allows the synchronization in

208

Substructural Logical Specifications - Robert J. Simmons

bind: exp -> exp -> prop pers. ; Future is complete
promise: dest -> exp -> prop lin. ; Future is waiting on a value

ev/bind: eval X D * !bind X V >-> {retn V D}.
#| WAITING: eval X D * promise Dfuture X >-> ??? |#
ev/promise: retn V D * promise D X >-> {!bind X V}.

ev/flam: eval (flam \x. E x) D >-> {retn (flam \x. E x) D}.

ev/fapp1: retn (flam \x. E x) D1 * cont (app1 E2) D1 D
>-> {Exists x. eval (E x) D *

Exists dfuture. eval E2 dfuture *
promise dfuture x}.

Figure 7.9: Semantics of call-by-future functions

rule ev/send1 to take place.
In small-step operational semantics, labeled deduction is used to describe specifications like

the one above. At a high level, in a labeled transition system we inductively define a small step
judgment e lab7−→ e′ with the property that

∗ e c!v7−→ e′ if e steps to e′ by reducing some subterm send c v, to 〈〉,

∗ e c?v7−→ e′ if e steps to e′ by reducing some subterm recv c to v, and

∗ e1 in parallel with e2 (and possibly also in parallel with some other e3, e4, etc.) can step
to e′1 in parallel with e′2 (and in parallel with an unchanged e3, e4, etc.) if e1

c!v7−→ e′1 and
e2

c?v7−→ e′2.

Labels essentially serve to pass messages up through the inductive structure of a proposition.
In destination-passing SSOS semantics, on the other hand, the internal structure of e is spread
out as a series of frames throughout the context, and so the innermost redexes of terms can be
directly connected. It would be interesting (but probably quite nontrivial) to consider a translation
from labeled deduction systems to destination-passing SSOS specifications along the lines of the
operationalization transformation.

7.2.3 Futures

Futures can be seen as a parallel version of call-by-value, and the presentation in Figure 7.9
can be compared to the environment semantics for call-by-value in Figure 6.19. We introduce
future-functions as a new kind of function flamλx.e comparable to plain-vanilla call-by-value
functions lamλx.e, lazy call-by-need functions lazylamλx.e, and environment-semantics func-
tions envlamλx.e. As in the environment semantics specification, when a call-by-future function
returns to a frame p2 e2q = app1 pe2q, we create a new expression x by existential quantifica-
tion. However, instead of suspending the function body on the stack as we did in Figure 6.19,
in Figure 7.9 we create a new destination dfuture and start evaluating the function argument

209

Substructural Logical Specifications - Robert J. Simmons

x1:〈eval p(λx.sx) (s z)q d1〉

x2:〈eval pλx.sxq d2〉, x3:〈cont p2 (s z)q d2 d1〉

x3:〈retn pλx.sxq d2〉, x3:〈cont p2 (s z)q d2 d1〉

x4:〈eval (succx) d1〉,

x4:〈eval (succx) d1〉,

x4:〈evalx d5〉, x9:〈cont succ1 d5 d1〉,

x4:〈evalx d5〉, x9:〈cont succ1 d5 d1〉,

x4:〈evalx d5〉, x9:〈cont succ1 d5 d1〉,

x4:〈evalx d5〉, x9:〈cont succ1 d5 d1〉,

x13:〈retn ps zq d5〉, x9:〈cont succ1 d5 d1〉, x12:〈bindx ps zq〉 pers

x14:〈retn ps (s z)q d1〉, x12:〈bindx ps zq〉 pers

x5:〈eval ps zq d3〉, x6:〈promise d3 x〉

x7:〈eval pzq d4〉, x8:〈cont succ1 d4 d3〉, x6:〈promise d3 x〉

x7:〈eval pzq d4〉, x8:〈cont succ1 d4 d3〉, x6:〈promise d3 x〉

x10:〈retn pzq d4〉, x8:〈cont succ1 d4 d3〉, x6:〈promise d3 x〉

x11:〈retn ps zq d3〉, x6:〈promise d3 x〉

x12:〈bindx ps zq〉 pers

In this phase,
the two computations

proceed in parallel

In this phase,
the primary computation is stuck

while it waits on the promiseRemember: bind is persistent, all other propositions are linear

Figure 7.10: Series of process states in an example call-by-future evaluation

towards that destination (rule ev/fapp1). We also create a linear proposition – promise dfuture x
– that will take any value returned to dfuture and permanently bind it to x (rule ev/promise). As
a proposition that only exists during the course of evaluating the argument, promise is analogous
to the black hole in our specification of lazy call-by-need.

Futures use destinations to create new and potentially disconnected threads of computation,
which can be seen in the example evaluation of (λx.sx) (s z) – where λx.e is interpreted as a
future function flam instead of lam as before – given in Figure 7.10. That figure illustrates how
spawning a future splits the destination structure of the ordered context into two disconnected
threads of computation. This was not possible in the ordered framework where every compu-
tation had to be somewhere specific in the ordered context relative to the current computation
– either to the left, or to the right. These threads are connected not by destinations but by the
variable x, which the primary computation needs the future to return before it can proceed.

Note the similarity between the commented-out rule fragment in Figure 7.9 and the com-
mented out rule fragments in the specifications of call-by-need evaluation (Section 6.5.2). In the
call-by-need specifications, needing an unavailable value was immediately fatal. With specifi-
cations, needing an unavailable value is not immediately fatal: the main thread of computation
is stuck, but only until the future’s promise is fulfilled. (This again violates the classification of
eval as active; as before, this could again be fixed by adding a new latent proposition.)

The destination-passing semantics of futures interact seamlessly with the semantics of syn-
chronization and parallelism, but not with the semantics of recoverable failure: we would have
to make some choice about what to do when a future signals failure.

210

Substructural Logical Specifications - Robert J. Simmons

eval: exp -> dest -> prop lin.
retn: exp -> dest -> prop lin.
cont: frame -> dest -> dest -> prop pers.

ev/letcc: eval (letcc \x. E x) D >-> {eval (E (contn D)) D}.
ev/throw2: retn (contn DK) D2 * !cont (throw2 V1) D2 D

>-> {retn V1 DK}.

Figure 7.11: Semantics of first-class continuations (with letcc)

7.2.4 First-class continuations
First-class continuations are a sophisticated control feature. Continuations are another name for
the stacks k in abstract machine semantics with states k � e and k � v (and also, potentially,
kJ if we want to be able to return errors, as discussed in Section 6.5.4). First-class continua-
tions introduce a new value, contn k, to the language. Programmers cannot write continuations
k directly, just as they cannot write locations l directly; rather, the expression pletccx.eq =
letccλx.peq captures the current expression as a continuation:

k � letccx.e 7→ k � [contn k/x]e

There is a third construct, pthrow e1 to e2q = throw pe1q pe2q that evaluates e1 to a value v1,
evaluates e2 to a continuation value cont k′, and then throws away the current continuation in
favor of returning v1 to k′:

k � throw e1 to e2 7→ (k; throw2 to e2)� e1

(k; throw2 to e2)� v1 7→ (k; throw v1 to2)� e2

(k; throw v1 to2)� contn k′ 7→ k′ � v1

When handled in a typed setting, a programming language with first-class continuations can be
seen as a Curry-Howard interpretation of classical logic.

In destination-passing SSOS specifications, we never represent continuations or control stacks
k directly. However, we showed in Section 6.3 that a control stack k is encoded in the context
as a series of cont frames. In a destination-passing specification, it is therefore reasonable to
associate a k continuation with the destination d that points to the topmost frame cont f d d′ in
the stack k encoded in the process state. Destinations stand for continuations in much the same
way that introduced variables x in the environment semantics stand for the values v they are
bound to through persistent bindx v propositions. In Figure 7.11, the rule ev/letcc captures the
current continuation d as an expression cont d that is substituted into the subexpression. In rule
ev/throw2, the destination dk held by the value contn dk gets the value v1 returned to it; the
previous continuation, represented by the destination d, is abandoned.

Just as it is critical for the bind predicate in the environment semantics to be persistent, it is
necessary, when dealing with first-class-continuations, to have the cont predicate be persistent.
As discussed in Section 7.1.2, it does not change the behavior of any SSOS specifications we
have discussed if linear cont predicates are turned into persistent cont predicates.

211

Substructural Logical Specifications - Robert J. Simmons

Turning cont into a persistent predicate does not, on its own, influence the transitions that are
possible, so in a sense we have not changed our SSOS semantics very much in order to add first-
class continuations. However, the implicit representation of stacks in the context does complicate
adequacy arguments for the semantics in Figure 7.11 relative to the transition rules given above.
We will return to this point in Section 9.6 when we discuss generative invariants that apply to
specifications using first-class continuations.

212

Substructural Logical Specifications - Robert J. Simmons

Bibliography

[CPWW02] Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins. A concur-
rent logical framework II: Examples and applications. Technical Report CMU-CS-
2002-002, Department of Computer Science, Carnegie Mellon University, March
2002. Revised May 2003. 1.1, 2.1, 4.4, 5, 5.1, 7, 7.2, 7.2.2, B.5

[MR96] Luc Moreau and Daniel Ribbens. The semantics of pcall and fork in the presence
of first-class continuations and side-effects. In Parallel Symbolic Languages and
Systems (PSLS’95), pages 53–77. Springer LNCS 1068, 1996. 7.2, 9.6

[Pfe04] Frank Pfenning. Substructural operational semantics and linear destination-passing
style. In Programming Languages and Systems, page 196. Springer LNCS 3302,
2004. Abstract of invited talk. 1.2, 2.1, 5, 5.1, 6.2.2, 7.2

[PS09] Frank Pfenning and Robert J. Simmons. Substructural operational semantics as
ordered logic programming. In Proceedings of the 24th Annual Symposium on
Logic in Computer Science (LICS’09), pages 101–110, Los Angeles, California,
2009. 1.2, 2.1, 2.5, 2.5.2, 2.5.3, 3.6.1, 4.7.3, 5, 5.1, 6.5, 6.5.3, 7.2, 7.2.2, 10.2

[SP11] Robert J. Simmons and Frank Pfenning. Logical approximation for program anal-
ysis. Higher-Order and Symbolic Computation, 24(1–2):41–80, 2011. 1.2, 2.5.3,
5.1, 6.5.3, 7, 7, 7.1, 1, 7.1, 7.2, 8, 8.3, 8.3, 8.4.2

213

	1 Introduction
	1.1 Logical frameworks
	1.2 Substructural operational semantics
	1.3 Invariants in substructural logic
	1.4 Contributions

	2 Linear logic
	2.1 Introduction to linear logic
	2.2 Logical frameworks
	2.3 Focused linear logic
	2.3.1 Polarity
	2.3.2 Polarization
	2.3.3 Focused sequent calculus
	2.3.4 Suspended propositions
	2.3.5 Identity expansion
	2.3.6 Cut admissibility
	2.3.7 Correctness of focusing
	2.3.8 Confluent versus fixed inversion
	2.3.9 Running example

	2.4 Synthetic inference rules
	2.5 Hacking the focusing system
	2.5.1 Atom optimization
	2.5.2 Exponential optimization
	2.5.3 Adjoint logic
	2.5.4 Permeability

	2.6 Revisiting our notation

	3 Substructural logic
	3.1 Ordered linear lax logic
	3.1.1 First-order logic

	3.2 Substructural contexts
	3.2.1 Fundamental operations on contexts
	3.2.2 Multiplicative operations
	3.2.3 Exponential operations

	3.3 Focused sequent calculus
	3.3.1 Restrictions on the form of sequents
	3.3.2 Polarized propositions
	3.3.3 Derivations and proof terms
	3.3.4 Variable substitution
	3.3.5 Focal substitution

	3.4 Cut admissibility
	3.4.1 Optimizing the statement of cut admissibility
	3.4.2 Proof of cut admissibility, Theorem ??

	3.5 Identity expansion
	3.6 Correctness of focusing
	3.6.1 Erasure
	3.6.2 De-focalization
	3.6.3 Unfocused admissibility
	3.6.4 Focalization

	3.7 Properties of syntactic fragments
	3.8 The design space of proof terms

	4 Substructural logical specifications
	4.1 Spine Form LF as a term language
	4.1.1 Core syntax
	4.1.2 Simple types and hereditary substitution
	4.1.3 Judgments
	4.1.4 Adequacy

	4.2 The logical framework SLS
	4.2.1 Propositions
	4.2.2 Substructural contexts
	4.2.3 Process states
	4.2.4 Patterns
	4.2.5 Values, terms, and spines
	4.2.6 Steps and traces
	4.2.7 Presenting traces
	4.2.8 Frame properties

	4.3 Concurrent equality
	4.3.1 Multifocusing

	4.4 Adequate encoding
	4.4.1 Generative signatures
	4.4.2 Restriction
	4.4.3 Generative invariants
	4.4.4 Adequacy of the transition system

	4.5 The SLS implementation
	4.6 Logic programming
	4.6.1 Deductive computation and backward chaining
	4.6.2 Concurrent computation
	4.6.3 Integrating deductive and trace computation

	4.7 Design decisions
	4.7.1 Pseudo-positive atoms
	4.7.2 The need for traces
	4.7.3 LF as a term language

	5 On logical correspondence
	5.1 Logical correspondence
	5.2 Related work
	5.3 Transformation and modular extension

	6 Ordered abstract machines
	6.1 Logical transformation: operationalization
	6.1.1 Transformable signatures
	6.1.2 Basic transformation
	6.1.3 Tail-recursion
	6.1.4 Parallelism
	6.1.5 Correctness

	6.2 Logical transformation: defunctionalization
	6.2.1 Defunctionalization
	6.2.2 Uncurrying
	6.2.3 From many predicates to many frames

	6.3 Adequacy with abstract machines
	6.3.1 Encoding states
	6.3.2 Preservation and adequacy

	6.4 Exploring the image of operationalization
	6.4.1 Arbitrary choice and failure
	6.4.2 Conditionals and factoring
	6.4.3 Operationalization and computation

	6.5 Exploring the richer fragment
	6.5.1 Mutable storage
	6.5.2 Call-by-need evaluation
	6.5.3 Environment semantics
	6.5.4 Recoverable failure
	6.5.5 Looking back at natural semantics

	6.6 Other applications of transformation
	6.6.1 Binary addition
	6.6.2 Operationalizing SOS specifications
	6.6.3 Partial evaluation in

	7 Destination-passing
	7.1 Logical transformation: destination-adding
	7.1.1 Vestigial destinations
	7.1.2 Persistent destination passing

	7.2 Exploring the richer fragment
	7.2.1 Alternative semantics for parallelism and failure
	7.2.2 Synchronization
	7.2.3 Futures
	7.2.4 First-class continuations

	8 Linear logical approximation
	8.1 Saturating logic programming
	8.2 Using approximation
	8.3 Logical transformation: approximation
	8.4 Control flow analysis
	8.4.1 Subexpressions in higher-order abstract syntax
	8.4.2 Environment semantics
	8.4.3 Approximation to 0CFA
	8.4.4 Correctness

	8.5 Alias analysis
	8.5.1 Monadic language
	8.5.2 Approximation and alias analysis

	8.6 Related work

	9 Generative invariants
	9.1 Worlds
	9.1.1 Regular worlds
	9.1.2 Regular worlds from generative signatures
	9.1.3 Regular worlds in substructural specifications
	9.1.4 Generative versus consumptive signatures

	9.2 Invariants of ordered specifications
	9.2.1 Inversion
	9.2.2 Preservation

	9.3 From well-formed to well-typed states
	9.3.1 Inversion
	9.3.2 Preservation

	9.4 State
	9.4.1 Inversion
	9.4.2 Uniqueness
	9.4.3 Preservation
	9.4.4 Revisiting pointer inequality

	9.5 Destination-passing
	9.5.1 Uniqueness and index sets
	9.5.2 Inversion
	9.5.3 Preservation
	9.5.4 Extensions

	9.6 Persistent continuations
	9.7 On mechanization

	10 Safety for substructural specifications
	10.1 Backwards and forwards through traces
	10.2 Progress for ordered abstract machines
	10.3 Progress with mutable storage
	10.4 Safety

	11 Conclusion
	A Process states summary
	A.1 Substructural contexts
	A.2 Steps and traces

	B A hybrid specification of Mini-ML
	B.1 Pure Mini-ML
	B.1.1 Syntax
	B.1.2 Natural semantics

	B.2 State
	B.2.1 Syntax
	B.2.2 Nested ordered abstract machine semantics
	B.2.3 Flat ordered abstract machine semantics

	B.3 Failure
	B.3.1 Syntax
	B.3.2 Flat ordered abstract machine semantics

	B.4 Parallelism
	B.4.1 Destination-passing semantics
	B.4.2 Integration of parallelism and exceptions

	B.5 Concurrency
	B.5.1 Syntax
	B.5.2 Natural semantics
	B.5.3 Destination-passing semantics

	B.6 Composing the semantics

