
Substructural Logical Specifications - Robert J. Simmons

Chapter 10

Safety for substructural specifications

In Chapter 9, we showed how the preservation theorem could be established for a wide variety of
SSOS semantics, both ordered abstract machines and destination-passing style semantics. The
methodology of generative invariants we espoused goes significantly beyond previous work on
type preservation for operational semantics specifications in substructural logic. Neither Linear
LF encodings by Pfenning, Cervesato, and Reed [CP02, Ree09], nor the Ordered LF encodings
of Felty and Momigliano [FM12], discussed preservation for concurrent specifications or for
first-class continuations.

More fundamentally, however, this previous work does not even provide a language for talk-
ing about progress theorems, the other critical companion of type safety theorems. These pre-
vious approaches were universally based on complete derivations. These complete derivations
have the flavor of derivations in a big-step semantics, and it is difficult or even impossible to
talk about progress for such specifications. The purpose of this chapter is to establish that the
SLS framework’s traces T and steps S, which correspond to partial proofs, provide a suitable ba-
sis for stating progress theorems (and therefore language safety theorems) and for proving these
theorems.

We do not discuss progress and safety for the full range of specifications from Part II or
Chapter 9, however. Instead, we will just discuss progress for two examples: the ordered abstract
machine specification with parallelism and failure used as an example in Figure 9.1, and the
extension of this specification with mutable storage. The rest is left for future work, though we
claim that these two examples serve to get across all the concepts necessary to prove progress
theorems for SSOS specifications. Ultimately, it is not only possible to prove progress and safety
theorems using SSOS specifications in SLS; it’s also reasonably straightforward.

10.1 Backwards and forwards through traces

In the last chapter, we worked on traces exclusively by induction and case analysis on the last
steps of a generative trace. This form of case analysis and induction on the last steps of a trace
can also be used to prove progress for sequential SSOS specifications, and it is actually neces-
sary to prove progress for SSOS specifications with first-class continuations (discussed in Sec-
tion 7.2.4 and Section 9.6) in this way, though we leave the details of this argument as future
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work. However, for the ordered abstract machine example from Figure 9.1, the other direction
is more natural: we work by induction and case analysis on the first steps of a generative trace.
The branching structure introduced by parallel continuation frames (that is, ordered propositions
cont2 f ) is what makes it more natural to work from the beginning of a generative trace, rather
than the end.

The proof of progress relies critically on one novel property: that transitions in the generative
trace do not tamper with terminals. Formally, we need to know that if Θ{∆} ;∗ΣGen ∆′ under
some generative signature ΣGen and if ∆ contains only terminals, then there is some Θ′ such
that the final state ∆′ matches Θ′{∆}. We will implicitly use this property in most of the cases
of the progress theorem below.

This property holds for all the generative signatures in Chapter 9, but establishing this prop-
erty for generative signatures in general necessitates a further restriction of what counts as a
generative signature (Definition 9.1). To see why, let ∆ = (x1:〈retn v〉 ord , x2:〈cont f〉 ord) and
consider the generative rule ∀e.{eval e}, which is allowed under Definition 9.1. This rule could
“break” the context by dropping an ordered eval e proposition in between x1 and x2. A sufficient
general condition for avoiding this problem is to demand that any generative rule that produces
ordered atomic propositions mentions an ordered nonterminal as a premise. (This is related to
the property called separation in [SP08].)

10.2 Progress for ordered abstract machines
The progress property is that, if T :: (x0:〈gen tp0〉 ord) ;∗ΣGen9 .4

∆ and ∆�, then one of these
three possibilities hold:

1. ∆ ; ∆′ under the signature from Figure 9.1,

2. ∆ = y:〈retn v〉 ord , where v is a value, or

3. ∆ = y:〈error〉 ord .

This is exactly the form of a traditional progress theorem: if a process state is well typed, it either
takes a step under the dynamic semantics or is a final state (terminating with an error or returning
a value).

The presence of parallel evaluation in Figure 9.1 necessitates that we generalize our induction
hypothesis. The statement above is a straightforward corollary of Theorem 10.1 below.

Theorem 10.1 (Progress for ordered abstract machines). If T :: Θ{x:〈gen tp〉 ord} ;ΣGen9 .4
∆

and ∆�, then either
∗ ∆ ; ∆′ under the signature from Figure 9.1 for some ∆′, or else
∗ T = (T1; {y} ← gen/retn tp v x;T2) and · ` N : value v true, or else
∗ T = (T1; {y} ← gen/error tp x;T2).

In the proof of Theorem 10.1, we will not detail the parts of the proof that already arise in tra-
ditional proofs of progress for abstract machines. These missing details can be factored into two
lemmas. The first lemma is that if · ` N : of e tp true, then the process state Θ{x:〈eval e〉 ord}
can always take a step; this lemma justifies the classification of eval as an active proposition as
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described in Section 7.2.2 and in [PS09]. The second lemma is traditionally called a canonical
forms lemma: it verifies, by case analysis on the structure of typing derivations and values, that
well-typed values returned to a well-typed frames can always take a step.

Proof. By induction and case analysis on the first steps of T . We cannot have T = �, because
we cannot apply restriction to a context containing the nonterminal gen tp. So T = S;T ′, and
either x /∈ •S or x ∈ •S.

If x /∈ •S, then T ′ :: Θ′{x:〈gen tp〉 ord} ;ΣGen9 .4
∆ and we can succeed by immediate

appeal to the induction hypothesis.
If x ∈ •S, then we perform case analysis on the possible transitions enabled by ΣGen9 .4 :

∗ S = {y} ← gen/eval e tp (x • !N) where · ` N : of e tp true.
Because eval is a terminal, ∆ = Θ′{y:〈eval e〉 ord}, and we proceed by case analysis on
N to show that the derivation can always take a step (eval is an active proposition).

∗ S = {y} ← gen/retn tp v (x • !N • !Nv) – succeed immediately.

∗ S = {y} ← gen/error tp x – succeed immediately.

∗ S = {y′1, y2} ← gen/cont tp f tp ′ (x • !N) where · ` N : off f tp ′ tp true.
Invoke the i.h. on T ′ : Θ{y′1:〈gen tp ′〉 ord , y2:〈cont f〉 ord};ΣGen9 .4

∆, and then perform
case analysis on the result to prove that ∆ ; ∆′:

If ∆ ; ∆′, then we’re done.
If T ′ = (T ′1; {y1} ← gen/retn tp ′ v (y′1 • !N ′ • !N ′v);T

′
2),

then because retn and cont are terminals, ∆ = Θ′{y1:〈retn v〉 ord , y2:〈cont f〉 ord},
and we proceed by simultaneous case analysis on N , N ′, and N ′v (canonical forms
lemma).
If T ′ = (T ′1; {y1} ← gen/error tp ′ y′1;T ′2),
then because error and cont are terminals, ∆ = Θ′{y1:〈error〉 ord , y2:〈cont f〉 ord},
and we have {z} ← ev/error f (y1 • y2) :: ∆ ; Θ′{z:〈error〉 ord}.

∗ S = {y′1, y′2, y3} ← gen/cont2 tp f tp1 tp2 (x • !N) where · ` N : off2 f tp1 tp2 tp true.
Invoke the i.h. twice on T ′ : Θ{y′1:〈gen tp1〉 ord , y′2:〈gen tp2〉 ord , y3:〈cont2 f〉 ord}, once
to see what happens to y′1, and another time to see what happens to y′2, and then perform
case analysis on the result to prove that ∆ ; ∆′:

If either invocation returns the first disjunctive possibility, that ∆ ; ∆′, then we’re
done.
If both invocations return the second disjunctive possibility, then T ′ contain two steps
{y1} ← gen/retn tp1 v1 (y′1 • !N1 • !Nv1) and
{y2} ← gen/retn tp2 v2 (y′2 • !N2 • !Nv2). Because retn and cont2 are terminals,
∆ = Θ′{y1:〈retn v1〉 ord , y2:〈retn v2〉 ord , y3:〈cont2 f〉 ord}, and we proceed by si-
multaneous case analysis on N , N1, Nv1, N2, and Nv2 (canonical forms lemma).
In all the remaining cases, one of the subcomputations becomes an error and the other
one becomes another error or a returned value. In any of these cases, ∆ ; ∆′ by one
of the rules ev/errret, ev/reterr, or by ev/errerr.

271



Substructural Logical Specifications - Robert J. Simmons

∗ S = {y′1, y2} ← gen/handle tp e2 (x • !N).
Invoke the i.h. on T ′ : Θ{y′1:〈gen tp ′〉 ord , y2:〈handle e2〉 ord} ;ΣGen9 .4

∆, and then per-
form case analysis on the result to prove that ∆ ; ∆′:

If ∆ ; ∆′, then we’re done.
If T ′ = (T ′1; {y1} ← gen/retn tp ′ v (y′1 • !N ′ • !N ′v);T

′
2),

then because retn and cont are terminals, ∆ = Θ′{y1:〈retn v〉 ord , y2:〈cont f〉 ord},
and we have {z} ← ev/catcha v e2 (y1 • y2) :: ∆ ; Θ′{z:〈retn v〉 ord}.
If T ′ = (T ′1; {y1} ← gen/error tp ′ y′1;T ′2),
then because error and cont are terminals, ∆ = Θ′{y1:〈error〉 ord , y2:〈handle e〉 ord},
and we have {z} ← ev/catchb e2 (y1 • y2) :: ∆ ; Θ′{z:〈eval e2〉 ord}.

This covers all possible first steps in the trace T , and thus completes the proof.

10.3 Progress with mutable storage
Developing progress proofs to for stateful specifications requires a property that is dual to unique
index sets (Definition 9.5, Section 9.5.1). Unique index sets require that there will be only ever
be at most one proposition of a certain form, and the dual property, assured index sets, require
that there is always at least one proposition of a certain form.

Definition 10.2. A set S is an assured index set at a type τ under a generative signature Σ and
an initial state (Ψ; ∆) if, whenever (Ψ; ∆) ;∗Σ (Ψ′; ∆′), then Ψ `Σ t : τ implies that, for some
a/i ∈ S, x:〈a t1 . . . tn〉 lvl ∈ ∆′ where ti = t.

The set {gencell/1, cell/1} is both a unique index set and an assured index set under ΣGen9 .6

and the initial state (·;x0:〈gen tp〉 ord). The latter property is critical to finishing the extension
of Theorem 10.1 proof in certain cases where we invoke the canonical forms lemma. When we
invoked the canonical forms lemma in the cont branch of that proof, we started with the knowl-
edge that ∆ = Θ′{y1:〈retn v〉 ord , y2:〈cont f〉 ord}. Two new outcomes are introduced when
we introduce mutable state as discussed in Section 6.5.1 and Section 9.4. The first is the possi-
bility that v = loc l while f = get1, and the second is the possibility that f = set2 l. In each
case, we cannot proceed with rule ev/get1 or rule ev/set2, respectively, unless we also know that
there is a variable binding z:cell l v′ in ∆. We know precisely this because {gencell/1, cell/1} is
an assured index set, because Ψ ` l:mutable loc, and because gencell propositions, as nonter-
minals, cannot appear in the generated process state ∆. Therefore, in the former case we can
produce a step {y′, z′} ← ev/get1 l v′ (y1 • y2 • z), and in the later case we can produce a step
{y′, z′} ← ev/set2 v l v′ (y1 • y2 • z).
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10.4 Safety
We conclude by presenting the safety theorem for the ordered abstract machine specification
from Figure 9.1. This theorem relates the encoding of the usual deductive formulation of the
typing judgment, of e tp, to a progress property stated in terms of substructural process states.

Theorem 10.3 (Safety for ordered abstract machines). If T :: (x:〈eval e〉 ord) ;∗ ∆ under the
signature from Figure 9.1 and · ` N : of e tp, then either
∗ ∆ ; ∆′ under the signature from Figure 9.1 for some ∆′, or else
∗ ∆ = (y:〈retn v〉 ord) and · ` N : value v, or else
∗ ∆ = (y:〈error〉 ord).

Proof. First, by induction and case analysis on the last steps of T , we show that for all ∆′

such that T ′ :: (x:〈eval e〉 ord) ;∗ ∆′ under the signature from Figure 9.1, we can construct a
generative trace Tg :: (x0:〈gen tp〉 ord) ;∗ΣGen9 .4

∆′:

Base case T ′ = �.
Construct Tg = {x} ← gen/eval tp e (x0 • !N) :: (x0:〈gen tp〉 ord) ;∗ΣGen9 .4

(x:〈eval e〉 ord).

Inductive case T ′ = T ′′;S, where T ′′ :: (x0:〈gen tp〉 ord) ;∗ΣGen9 .4
∆′′ and S :: ∆′′ ;ΣGen9 .4

∆′.
By the induction hypothesis, we have T ′g :: (x0:〈gen tp〉 ord) ;∗ΣGen9 .4

∆′′. By preservation
(Theorem 9.3) on T ′g and S, we have T ′g :: (x0:〈gen tp〉 ord) ;∗ΣGen9 .4

∆′.

This means, in particular, that we can construct Tg :: (x0:〈gen tp〉 ord) ;∗ΣGen9 .4
∆.

By the progress theorem (Theorem 10.1) on Tg, there are three possibilities:

∗ If ∆ ; ∆′, then we’re done.
∗ If Tg :: (T1; {y} ← gen/retn tp v (x0 • !N ′ • !N ′v);T2), then by a trivial case analysis on
T1 and T2 we can conclude that both are empty and, therefore, that ∆ = (y:〈retn v〉 ord).
∗ If Tg :: (T1; {y} ← gen/error tp x0;T2), then by a trivial case analysis on T1 and T2 we

can conclude that both are empty and, therefore, that ∆ = (y:〈error〉 ord).

This concludes the proof of safety.
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