Chapter 1

Introduction

Suppose you find yourself in possession of

* a calculator of unfamiliar design, or

* anew board game, or

* the control system for an army of robots, or
* an implementation of a security protocol, or

x the interface to a high-frequency trading system.

The fundamental questions are the same: What does it do? What are the rules of the game? The
answer to this question, whether it comes in the form of an instruction manual, a legal document,
or an ISO standard, is a specification.

Specifications must be formal, because any room for misinterpretation could (respectively)
lead to incorrect calculations, accusations of cheating, a robot uprising, a security breach, or
bankruptcy. At the same time, specifications must be clear: while clarity is in the eye of the
beholder, a specification that one finds hopelessly confusing or complex is no more useful than
one that is hopelessly vague. Clarity is what allows us to communicate with each other, to use
specifications to gain a common understanding of what some system does and to think about how
that system might be changed. Formality is what allows specifications to interact with the world
of computers, to say with confidence that the implementation of the calculator or high-frequency
trading system obeys the specification. Formality also allows specifications to interact with the
world of mathematics, and this, in turn, enables us to make precise and accurate statements about
what may or may not happen to a given system.

The specification of many (too many!) critical systems still remains in the realm of English
text, and the inevitable lack of formality can and does make formal reasoning about these spec-
ifications difficult or impossible. Notably, this is true about most of the programming languages
used to implement our calculators, program our robot army control systems, enforce our security
protocols, and interact with our high-frequency trading systems. In the last decade, however,
we have finally begun to see the emergence of operational semantics specifications (the “rules
of the game” for a programming language) for real-world programming languages that are truly
formal. A notable aspect of this recent work is that the formalization effort is not done simply for
formalization’s sake. Ellison and Rogu’s formal semantics of C can be used to check individual



programs for undefined behavior, unsafe situations where the rules of the game no longer apply
and the compiler is free to do anything, including unleashing the robot army [ER12]. Lee, Crary,
and Harper’s formalization of Standard ML has been used to formally prove — using a computer
to check all the proof’s formal details — a much stronger safety property: that every program
accepted by the compiler is free of undefined behavior [LCHO7].

Mathematics, by contrast, has a century-long tradition of insisting on absolute formality (at
least in principle: practice often falls far short). Over time, this tradition has become a col-
laboration between practicing mathematicians and practicing computer scientists, because while
humans are reasonable judges of clarity, computers have absolutely superhuman patience when it
comes to checking all the formal details of an argument. One aspect of this collaboration has been
the development of logical frameworks. In a logical framework, the language of specifications
is derived from the language of logic, which gives specifications in a logical framework an inde-
pendent meaning based on the logic from which the logical framework was derived. To be clear,
the language of logic is not a single, unified entity: logics are formal systems that satisfy certain
internal coherence properties, and we study many of them. For example, the logical framework
Coq is based on the Calculus of Inductive Constructions [Coq10], the logical framework Agda is
based on a variant of Martin-Lof’s type theory called UT Ty, [Nor(07], and the logical framework
Twelf is based on the dependent type theory AU, also known as LF [PS99]. Twelf was the basis
of Lee, Crary, and Harper’s formalization of Standard ML.

Why is there not a larger tradition of formally specifying the programming languages that
people actually use? Part of the answer is that most languages that people actually use have lots
of features — like mutable state, or exception handling, or synchronization and communication, or
lazy evaluation — that are not particularly pleasant to specify using existing logical frameworks.
Dealing with a few unpleasant features at a time might not be much trouble, but the combinations
that appear in actual programming languages cause formal programming language specifications
to be both unclear for humans to read and inconvenient for formal tools to manipulate. A more
precise statement is that the addition of the aforementioned features is non-modular, because
handling a new feature requires reconsidering and revising the rest of the specification. Some
headway on this problem has been made by frameworks like the K semantic framework that
are formal but not logically derived; the K semantic framework is based on a formal system
of rewriting rules [R$10]. Ellison and Rosu’s formalization of C was done in the K semantic
framework.

This dissertation considers the specification of systems, particularly programming languages,
in logical frameworks. We consider a particular family of logics, called substructural logics,
in which logical propositions can be given an interpretation as rewriting rules as detailed by
Cervesato and Scedrov [CS09]. We seek to support the following:

Thesis Statement: Logical frameworks based on a rewriting interpretation of sub-
structural logics are suitable for modular specification of programming languages
and formal reasoning about their properties.'

Part I of the dissertation covers the design of logical frameworks that support this rewriting
interpretation and the design of the logical framework SLS in particular. Part II considers the

!'The original thesis proposal used the phrase “forward reasoning in substructural logics” instead of the phrase
“a rewriting interpretation of substructural logics,” but these are synonymous, as discussed in Section 4.6.
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hd < < >< < >>> ~
<hd <><<>>> ~
< <hd><<>>> ~
<hd < <>>> ~
< <hd<>>> ~
<< <hd>>> ~
< < hd>> ~
< hd > ~»

hd

Figure 1.1: Series of PDA transitions

modular specification of programming language features in SLS and the methodology by which
we organize and relate styles of specification. Part III discusses formal reasoning about properties
of SLS specifications, with an emphasis on establishing invariants.

1.1 Logical frameworks

Many interesting stateful systems have a natural notion of ordering that is fundamental to their
behavior. A very simple example is a push-down automaton (PDA) that reads a string of symbols
left-to-right while maintaining and manipulating a separate stack of symbols. We can represent
a PDA’s internal configuration as a sequence with three regions:

[ the stack | | the head | | the string being read |

where the symbols closest to the head are the top of the stack and the symbol waiting to be read
from the string. If we represent the head as a token hd, we can describe the behavior (the rules
of the game) for the PDA that checks a string for correct nesting of angle braces by using two
rewriting rules:

hd < ~» < hd (push)
<hd> ~ hd (pop)

The distinguishing feature of these rewriting rules is that they are local — they do not mention
the entire stack or the entire string, just the relevant fragment at the beginning of the string and
the top of the stack. Execution of the PDA on a particular string of tokens then consists of (1)
appending the token hd to the beginning of the string, (2) repeatedly performing rewritings until
no more rewrites are possible, and (3) checking to see if only a single token hd remains. One
possible series of transitions that this rewriting system can take is shown in Figure 1.1

Because our goal is to use a framework that is both simple and logically motivated, we turn
to a substructural logic called ordered logic, a fragment of which was originally proposed by
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Lambek for applications in computational linguistics [Lam58]. In ordered logic, hypotheses are
ordered relative to one another and cannot be rearranged. The rewriting rules we considered
above can be expressed as propositions in ordered logic, where the tokens hd, >, and < are all
treated as atomic propositions:

push: hde < — {<ehd}
pop: <ehde> »— {hd}

The symbol e (pronounced “fuse”) is the binary connective for ordered conjunction (i.e. con-
catenation); it binds more tightly than —, a binary connective for ordered implication. The curly
braces {...} can be ignored for now.

The propositional fragment of ordered logic is Turing complete: it is in fact a simple exercise
to specify a Turing machine! Nevertheless, first-order quantification helps us write specifications
that are short and clear. For example, by using first-order quantification we can describe a a more
general push-down automaton in a generic way. In this generic specification, we use left(X)
and right(X') to describe left and right angle braces (X = an), square braces (X = sq), and
parentheses (X = pa). The string [ < > ([]) ] is then represented by the following sequence of
ordered atomic propositions:

left(sq) left(an) right(an) left(pa) left(sq) right(sq) right(pa) right(sq)
The following rules describe the more general push-down automaton:

push : Vz.hd e left(x) — {stack(z) e hd}
pop : Vz.stack(z) e hd e right(z) ~— {hd}

(This specification would still be possible in propositional ordered logic; we would just need one
copy of the push rule and one copy of the pop rule for each pair of braces.) Note that while
we use the fuse connective to indicate adjacent tokens in the rules above, no fuses appear in
Figure 1.1. That is because the intermediate states are not propositions in the same way rules are
propositions. Rather, the intermediate states in Figure 1.1 are contexts in ordered logic, which
we will refer to as process states.

The most distinctive characteristic of these transition systems is that the intermediate stages
of computation are encoded in the structure of a substructural context (a process state). This
general idea dates back to Miller [Mil93] and his Ph.D. student Chirimar [Chi95], who encoded
the intermediate states of a -calculus and of a low-level RISC machine (respectively) as contexts
in focused classical linear logic. Part I of this dissertation is concerned with the design of logical
frameworks for specifying transition systems. In this respect, Part I follows in the footsteps of
Miller’s Forum [Mil96], Cervesato and Scedrov’s multiset rewriting language w [CS09], and
Watkins et al.’s CLF [WCPWO02].

As an extension to CLF, the logical framework we develop is able to specify systems like the
m-calculus, security protocols, and Petri nets that can be encoded in CLF [CPWWO02]. The ad-
dition of ordered logic allows us to easily incorporate specifications that are naturally expressed
as string rewriting systems. An example from the verification domain, taken from Bouajjani and
Esparza [BEO6], is shown in Figure 1.2. The left-hand side of the figure is a simple Boolean
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bool function foo(l) | (b) (tt,fo) — (b) (tt,f1) Vb. gl(b) e foo(tt, fy) —

fo:  iflthen (b) (ff, fo) — (b) (ff,f2) {gl(b) e foo(tt, 1)}

fi: return ff (b) (I,f1) — (ff) Vb. gl(b) » foo(ff, fo)

else by (I,f)) — (tt) {gl(b) e foo(ff, f;)}

f2 ﬁretum * V. gl(b) & foo(l, f1) — {gI(ff)}
Vb. gl(b) e foo(l, f) — {gl(tt)}

procedure main/() (tt) (mg) — (tt) (mq) gl(tt) e main(mg) —

global b (ff) (mo)  —  (ff) (m,) {gl(tt) ® main(my)}

Mmgq: while b do <b> <m1> — <b> <b, f0> <m0) g|(ff) ° main(mo) NN

my: Z := foo(b) (b) (my) — € {gl(tt) @ main(m,)}

My (r)eturn Vb. gl(b) @ main(my) —

{gl(b) e foo(b, fy) ® main(mg)}

Vb. gl(b) e main(my) — {1}

Figure 1.2: A Boolean program, encoded as a rewriting system and in SLS

program: the procedure foo has one local variable and the procedure main has no local variables
but mentions a global variable . Bouajjani and Esparza represented Boolean programs like this
one as canonical systems like the one shown in the middle of Figure 1.2. Canonical systems are
rewriting systems where only the left-most tokens are ever rewritten: the left-most token in this
canonical system always has the form (b), where b is either true (tt) or false (ff), representing
the valuation of the global variables — there is only one, . The token to the right of the global
variables contains the current program counter and the value of the current local variables. The
token to the right of that contains the program counter and local variables of the calling proce-
dure, and so on, forming a call stack that grows off to the right (in contrast to the PDA’s stack,
which grew off to the left). Canonical systems can be directly represented in ordered logic, as
shown on the right-hand side of Figure 1.2. The atomic proposition gl(b) contains the global
variables (versus (b) in the middle column), the atomic proposition foo(l, f) contains the local
variables and program counter within the procedure foo (versus (/, f) in the middle column), and
the atomic proposition main(m) contains the program counter within the procedure main (versus
(m) in the middle column).

The development of SLS, a CLF-like framework of substructural logical specifications that
includes an intrinsic notion of order, is a significant development of Part I of the dissertation.
However, the principal contribution of these three chapters is the development of structural fo-
calization, which unifies Andreoli’s work on focused logics [And92] with the hereditary substi-
tution technique that Watkins developed in the context of CLF [WCPWO02]. Chapter 2 explains
structural focalization in the context of linear logic, Chapter 3 establishes focalization for a richer
substructural logic OL3, and Chapter 4 takes focused OL3 and carves out the SLS framework as
a fragment of the focused logic.



1.2 Substructural operational semantics

Existing logical frameworks are perfectly capable of representing simple systems like PDAs, and
while applications in the verification domain like the rewriting semantics of Boolean programs
are an interesting application of SLS, they will not be a focus of this dissertation. Instead, in
Part II, we will concentrate on specifying the operational semantics of programming languages
in SLS. We can represent operational semantics in SLS in many ways, but we are particularly
interested in a broad specification style called substructural operational semantics, or SSOS
[Pfe04, PS09].2 SSOS is a synthesis of structural operational semantics, abstract machines, and
logical specifications.

One of our running examples will be a call-by-value operational semantics for the untyped
lambda calculus, defined by the BNF grammar:

ex=x| Av.e

€1 €2
Taking some liberties with our representation of terms,®> we can describe call-by-value evaluation
for this language with the same rewriting rules we used to describe the PDA and the Boolean
program’s semantics. Our specification uses three atomic propositions: one, eval(e), carries an
unevaluated expression e, and another, retn(v), carries an evaluated value v. The third atomic
proposition, cont(f), contains a continuation frame [ that represents some partially evaluated
value: [ = e, contains an expression e, waiting on the evaluation of e; to a value, and f =
(Az.e) O contains an function Ax.e waiting on the evaluation of e to a value. These frames are
arranged in a stack that grows off to the right (like the Boolean program’s stack).

The evaluation of a function is simple, as a function is already a fully evaluated value, so we
replace eval(A\z.e) in-place with retn(A\z.e):

ev/lam : eval (Ax.e) — {retn (\z.e)}
The evaluation of an application e; e,, on the other hand, requires us to push a new element onto
the stack. We evaluate ¢, e; by evaluating e; and leaving behind a frame [ e, that suspends the
argument e, while e is being evaluated to a value.

ev/app : eval(e;ey) — {eval (e1) @ cont (D es)}

When a function is returned to a waiting [ e, frame, we switch to evaluating the function argu-
ment while storing the returned function in a frame (\z.e) .

ev/appl : retn(\z.e) e cont (O es) — {eval (e3) ® cont ((Az.e)O)}

Finally, when an evaluated function argument is returned to the waiting (\z.e) O frame, we
substitute the value into the body of the function and evaluate the result.

ev/app2 : retn (vy) @ cont ((Az.e) O) — {eval ([vy/z]e)}



eval (Az.x) (A\y.y) (Az.€))) ~= (by rule ev/app)
eval (Az.z) cont(O((\y.y) (Az.€))) ~» (by rule ev/lam)
retn (Az.z) cont (O ((\y.y) (Az.€))) ~~ (by rule ev/appl)
eval (A\y.y) (Az.e)) cont((Ax.z)O) ~~ (by rule ev/app)
eval (Ay.y) cont(O(Az.e)) cont((Ax.z)d) ~~ (by rule ev/lam)
retn (A\y.y) cont(0 (Az.e)) cont((Azx.z)0)) ~~ (by rule ev/appl)
val (Az.e) cont((Ay.y)O) cont((Az.x)d) ~» (by rule ev/lam)
retn (Az.e) cont((A\y.y)O) cont((Ax.z)d) -~ (by rule ev/app2)
eval (Az.e) cont((Az.x)O) ~~ (by rule ev/lam)
retn (\z.e) cont ((A\z.x)0) ~» (by rule ev/app2)
eval (A\z.e) ~~ (by rule ev/lam)

retn (Az.e)

Figure 1.3: SSOS evaluation of an expression to a value

These four rules constitute an SSOS specification of call-by-value evaluation; an example of
evaluating the expression (Azr.x) ((A\y.y) (Az.e)) to a value under this specification is given in
Figure 1.3. Again, each intermediate state is represented by a process state or ordered context.

The SLS framework admits many styles of specification. The SSOS specification above
resides in the concurrent fragment of SLS. (This rewriting-like fragment is called concurrent
because rewriting specifications are naturally concurrent — we can just as easily seed the process
state with two propositions eval(e) and eval(¢’) that will evaluate to values concurrently and
independently, side-by-side in the process state.) Specifications in the concurrent fragment of
SLS can take many different forms, a point that we will discuss further in Chapter 5.

On the other end of the spectrum, the deductive fragment of SLS supports the specification
of inductive definitions by the same methodology used to represent inductive definitions in LF
[HHP93]. We can therefore use the deductive fragment of SLS to specify a big-step opera-
tional semantics for call-by-value evaluation by inductively defining the judgment e |} v, which
expresses that the expression e evaluates to the value v. On paper, this big-step operational
semantics is expressed with two inference rules:

er  Az.e e Jvg [vg/xles v
Ax.e || Ax.e eres v

Big-step operational semantics specifications are compact and elegant, but they are not particu-
larly modular. As a (contrived but illustrative) example, consider the addition of a incrementing

>The term substructural operational semantics merges structural operational semantics [Plo04], which we seek
to generalize, and substructural logic, which forms the basis of our specification framework.

3In particular, we are leaving the first-order quantifiers implicit in this section and using an informal object
language representation of syntax. The actual representation of syntax uses LF terms that adequately encode this
object language, as discussed in Section 4.1.4.
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store6 eval (A\y.y) cont (O count (by rule ev/lam)
store6 retn (\y.y) cont (O count (by rule ev/app2)
store6 eval (count) cont((\y.y) O (by rule ev/count)
store7 retn(6) cont((\y.y) D (by rule ev/app2)
store7 eval (6 (by rule ev/lam)

store7 retn (6

Figure 1.4: Evaluation with an imperative counter

counter count to the language of expressions e. The counter is a piece of runtime state, and every
time count is evaluated, our runtime must return the value of the counter and then increments the
counter.* To extend the big-step operational semantics with this new feature, we have to revise
all the existing rules so that they mention the running counter:

(count,n) | (n,n+1)

(e1,n) § (Azr.e,my)  (e2,my) I (v2,n,)
(e1ea,m) I (v,n))

The simple elegance of our big-step operational semantics has been tarnished by the need to
deal with state, and each new stateful feature requires a similar revision. In contrast, our SSOS
specification can tolerate the addition of a counter without revision to the existing rules; we just
store the counter’s value in an atomic proposition store(n) to the left of the eval(e) or retn(v)
proposition in the ordered context. Because the rules ev/lam, ev/app, ev/appl, and ev/app2
are local, they will ignore this extra proposition, which only needs to be accessed by the rule
ev/count.

(Az.e,n) || (Az.e,n)
([v2/x]es, 15) I (v, 1)

ev/count : storen e eval count — {store (n + 1) e retnn}

In Figure 1.4, we give an example of evaluating (((Az.\y.y)count) count) to a value with a
starting counter value of 5. This specific solution — adding a counter proposition to the left of
the eval or retn — is rather contrived. We want, in general, to be able to add arbitrary state,
and this technique only allows us to add one piece of runtime state easily: if we wanted to

“4To keep the language small, we can represent numerals 7 as Church numerals: 0 = (Af.\z.2), 1 = (Af.\z.fx),
2= (Af x.f(fx)),andsoon. Then,n + 1 = Af A x.feif n = Af.\z.e.



introduce a second counter, where would it go? Nevertheless, the example does foreshadow
how, in Part II of this dissertation, we will show that SSOS specifications in SLS allow for the
modular specification of many programming language features.

An overarching theme of Part II is that we can have our cake and eat it too by deploying the
logical correspondence, an idea that was developed jointly with Ian Zerny and that is explained in
Chapter 5. In Chapter 6, we show how we can use the logical correspondence to directly connect
the big-step semantics and SSOS specifications above; in fact, we can automatically and me-
chanically derive the latter from the former. As our example above showed, big-step operational
semantics do not support combining the specification of pure features (like call-by-value evalua-
tion) with the specification of a stateful feature (like the counter) — or, at least, doing so requires
more than concatenating the specifications. Using the automatic transformations described in
Chapter 6, we can specify pure features (like call-by-value evaluation) as a simpler big-step se-
mantics specification, and then we can compose that specification with an SSOS specification of
stateful features (like the counter) by mechanically transforming the big-step semantics part of
the specification into SSOS. In SSOS, the extension is modular: the call-by-value specification
can be extended by just adding new rules for the counter. Further transformations, developed
in joint work with Pfenning [SP11], create new opportunities for modular extension; this is the
topic of Chapter 7.

Appendix B puts the logical correspondence to work by demonstrating that we can create a
single coherent language specification by composing four different styles of specification. Pure
features are given a natural semantics, whereas stateful, concurrent, and control features are
specified at the most “high-level” SSOS specification style that is appropriate. The automatic
transformations that are the focus of Part II then transform the specifications into a single coher-
ent specification.

Transformations on SLS specifications also allow us to derive abstract analyses (such as con-
trol flow and alias analysis) directly from SSOS specifications. This methodology for program
abstraction, linear logical approximation, is the focus of Chapter 8.

1.3 Invariants in substructural logic

A prominent theme in work on model checking and rewriting logic is expressing invariants in
terms of temporal logics like LTL and verifying these properties with exhaustive state-space
exploration [CDE™ 11, Chapter 10]. In Part III of this dissertation we offer an approach to invari-
ants that is complementary to this model checking approach. From a programming languages
perspective, invariants are often associated with fypes. Type invariants are well-formedness cri-
teria on programs that are weak enough to be preserved by state transitions (a property called
preservation) but strong enough to allow us to express the properties we expect to hold of all
well-formed program states. In systems free of deadlock, a common property we want to hold is
progress — a well-typed state is either final or it can evolve to some other state with a state tran-
sition. (Even in systems where deadlock is a possibility, progress can be handled by stipulating
that a deadlocked state is final.) Progress and preservation together imply the safety property that
a language is free of unspecified behavior.

Chapter 9 discusses the use of generative signatures to describe well-formedness invariants
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gen_state ~~ (by rule gen/app2)

gen_state cont((Az.z)0)) ~ (by rule gen/appl)

gen_state cont (0 (A\z.e)) cont((Az.z)d) ~» (by rule gen/retn)
Ao

retn (A\y.y) cont (0 (Az.e)) cont((Ax.z)0)
Figure 1.5: Proving well-formedness of one of the states from Figure 1.3

of specifications. Generative signatures look like a generalization of context-free grammars,
and they allow us to characterize contexts by a describing rewriting rules that generate legal or
well-formed process states in the same way that context-free grammars characterize grammatical
strings by describing rules that generate all grammatical strings.

In our example SSOS specification, a process state that consists of only a single retn(v)
proposition is final, and a well-formed state is any state that consists of an atomic proposition
eval(e) (where e is a closed expression) or retn(Az.e) (where \z.e is a closed expression) to
the left of a series of continuation frames cont( ¢) or cont((Az.e) ). We can characterize all
such states as being generated from an initial atomic proposition gen_state under the following
generative signature:

gen/eval : gen_state — {eval(e)}

gen/retn : gen_state — {retn(\z.c)}

gen/appl : gen_state — {gen state e cont(ey)}
gen/app2 : gen_state — {gen_state e cont((Az.e)0)}

The derivation of one of the intermediate process states from Figure 1.3 is shown in Figure 1.5.

Well-formedness is a global property of specifications. Therefore, if we add state to the
specification, we have to change the description of what counts as a final state and extend the
grammar of well-formed process states. In the case of our counter extension, final states have a
single store(n) proposition to the left of a single retn(v) proposition, and well-formed states are
generated from an initial atomic proposition gen under the following extension to the previous
generative signature:

gen/all : gen — {gen_store ® gen state}

gen/store : gen_store — {store(n)}

The grammar above describes a very coarse invariant of our SSOS specification, and it is
possible to prove that specifications preserve more expressive invariants. An important class of
examples are invariants about the types of expressions and process states, which will be con-
sidered in Chapter 9. For almost any SSOS specification more complicated than the one given
above, type invariants are necessary for proving the progress theorem and concluding that the
specification is safe — that is, free from undefined behavior. Chapter 10 will consider the use of
generative invariants for proving safety properties of specifications.
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1.4 Contributions

The three parts of this dissertation support three different aspects of our central thesis, which we
can state as refined thesis statements that support the central thesis. We will presently discuss
these supporting thesis statements along with the major contributions associated with each of the
refinements.

Thesis (Part I): The methodology of structural focalization facilitates the derivation
of logical frameworks as fragments of focused logics.

The first major contribution of Part I of the dissertation is the development of structural focal-
ization and its application to linear logic (Chapter 2) and ordered linear lax logic (Chapter 3).
The second major contribution is the justification of the logical framework SLS as a fragment of
a focused logic, generalizing the hereditary substitution methodology of Watkins [WCPWO02].

Thesis (Part II): A logical framework based on a rewriting interpretation of sub-
structural logic supports many styles of programming language specification. These
styles can be formally classified and connected by considering general transforma-
tions on logical specifications.

The major contribution of Part II is the development of the logical correspondence, a method-
ology for extending, classifying, inter-deriving, and modularly extending operational semantics
specifications that are encoded in SLS, with an emphasis on SSOS specifications. The trans-
formations in Chapter 6 connect big-step operational semantics specifications and the ordered
abstract machine-style SSOS semantics that we introduced in Section 1.2. The destination-
adding transformation given in Chapter 7 connects these specifications with the older destination-
passing style of SSOS specification. In both chapters the transformations we discuss add new
opportunities for modular extension — that is, new opportunities to add features to the language
specification without revising existing rules. The transformations in these chapters are imple-
mented in the SLS prototype, as demonstrated by the development in Appendix B.

Thesis (Part III): The SLS specification of the operational semantics of a program-
ming language is a suitable basis for formal reasoning about properties of the spec-
ified language.

We discuss two techniques for formal reasoning about the properties of SSOS specifications
in SLS. In Chapter 8 we discuss the logical approximation methodology and show that it can
be used to take SSOS specifications and derive known control flow and alias analyses that are
correct by construction. The use of generative signatures to describe invariants is discussed in
Chapter 9, and the use of these invariants to prove safety properties of programming languages
is discussed in Chapter 10.
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