
Build your own 8-bit busy beaver on a breadboard!
or: Look, it’s clearly decidable whether any program on your computer terminates or not.

There is a straightforward decision procedure for determining whether any
deterministic algorithm running on a correctly operating physical com-
puter either terminates or fails to terminate. This, in turn, means that every
physical computer has a computable “busy beaver” quantity, the maximum
number of steps taken by any terminating program before terminating.

In this paper, we provide some preliminary results in the context of an 8-
bit computer design popular in electronic hobbyist circles. We procrastinated
starting on this research, and are therefore only able to present lower bounds
at this time. The relatively trivial future work is left as an exercise for the
reader, via crowdsourcing, at http://sisyphean.glitch.me/.

ACH Reference Format:

Robert J. Simmons. 2021. Build your own 8-bit busy beaver on a breadboard!
SIGBOVIK (April 1, 2021), 4 pages.

1 INTRODUCTION

Computer science is built upon a foundation of lies and deceit. The
dirtiest secret of every second-semester computer science class is
that algorithms don’t really exist. Your algorithms textbook lets
you prove that you can efficiently perform binary search on your
array of 1080 uint64_t values, but when you try to allocate the
8-yottabyte array needed to perform that calculation, your AWS bill
is gonna go through the roof real fast.
One of the foremost lies of so-called “computer science” is the

existence of Turing-so-called “machines.” Turing machines do not

exist [Murphy VII 2008], as their standard definition posits the
straightforwardly nonsensical existence of a tape of infinite length.
If we accept the definition of computer science presented by

Newell, Simon, and Perlis [Newell et al. 1967], namely as

. . . the theory and design of computers, as well as the
study of all the phenomena arising from them. . .

then nonsense such as the study of Turing machines must be seen as
belonging, not to computer science, but to lesser fields such as math-
ematics that still deign to associate with patently absurd nonsense
like the infinity of positive integers.
This work is part of a project bringing crude mathematical “re-

sults” “in” “computer science” into the realm of the reality of physical
computers. We seek to do so in a style accessible to a hobbyist or
layperson – no soldering required.

1.1 Termination on a MacBook Pro

A bedrock result in “computer science” is that there is no general
procedure for determining whether any given Turing “machine”
terminates, given the Turing machine’s initial configuration.

The computer on which I am authoring this paper has no access
to absurdities like infinite tape. Instead, it has approximately 250

gigabytes of hard drive storage and 16 gigabytes of random access
memory, plus associated internal state (registers, page tables, and
flags). It’s safe to say the computer has less than 4 terabits of state,
a measly 242 switches that can be set to an “on” or “off” state.

Fig. 1. A typical Ben Eater 8-Bit Breadboard Computer build, with the state
relevant to the ISA highlighted. (Image from Reddit user -wellplayed-.)

Absent external outputs1 this computer is a deterministic machine
whose behavior is entirely determined by those 242 bits of state. If,
during an uninterrupted course of operation, the same pattern of 242

bits is encountered and then, after 𝑛 execution steps, encountered
again, it is a certainty that after another 𝑛 steps of uninterrupted
execution that pattern will, once again, be encountered. A repeated
state gives an immediate proof of non-termination.

There are a mere 22
42

possible states that this machine might be in,
leading to a trivial algorithm for determining whether any program

halts or not: let the machine run through 22
42

steps of execution. If
the program is still running, then by the pigeonhole principle, one
of those states was repeated, and so the program does not terminate.

1.2 Plan of this work

The workaday computer scientist generally cannot wait for 22
42

exe-
cution steps, even with the enhanced efficiency of the new M1 chip,
the first chip designed specifically for Mac [Apple 2021]. Therefore,
we will explore the clear decidability of the halting problem on a
popular hobbyist computer with a more approachable state space.
Having done this, we will turn to several variations of the Busy

Beaver problem, the search for the longest-running halting program
on a computational device. We also introduce a Sisyphean Beaver
problem as a contribution to the hobbyist DIY computer community.

We conclude by crowdsourcing future results.

1This work concerns only deterministic programs and algorithms. In this context,
“deterministic” is meant to exclude programs relying on input from the outside world
after starting execution, whether in the form of interactive input or physics-based
random number generators.

38

278



2 BEN EATER’S 8-BIT BREADBOARD COMPUTER

Ben Eater is a former Khan Academy instructor [Eater 2018], edu-
cational YouTuber [Eater 2021], and designer of the world’s worst
VGA card [Eater 2019]. Through a series of explanatory YouTube
videos and commercially available kits, he has popularized a simple
computer design, inspired by Malvino’s SAP-1 [Malvino 1977], that
can be built on a dozen or so breadboards with relatively primitive
integrated circuits [Eater 2017].
The 8-bit breadboard computer designed by Eater uses several

clock cycles to compute a single instruction, and so has a few bytes of
internal state that carry out the multiple parts of a single instruction.
We can safely ignore them for this presentation, and describe the
machine model for the “Eater ISA” as having a total of 86 bits of
internal state:

• Two one-byte registers, an accumulator 𝑎 and a display regis-
ter 𝑑 that displays its contents in decimal.

• One four-bit memory address register 𝑝𝑐 .
• 16 bytes of addressable memory𝑀 .
• Two one-bit flag registers 𝑐 and 𝑧 that are set whenever an
ADD or SUB operation is performed. The 𝑐 register is set to
the carry-out bit of the adder, and the 𝑧 bit is set to 1 if the
result of the operation is a zero, and is set to 0 otherwise.

The Eater ISA is described in Figure 2. An execution step consists
of two phases. In the first phase, the machine uses the program
counter 𝑝𝑐 to fetch the next instruction from𝑀 [𝑝𝑐]. In the second
phase, the machine updates its state according to the fetched in-
struction’s function. The machine always starts with 𝑎, 𝑑 , 𝑝𝑐 , 𝑐 , and
𝑧 set to zero.

2.1 Undefined behavior

Six opcodes are undefined; to fully specify the machine’s behavior
these must be resolved. In this paper, we’ll consider two possibilities:

• The opcodes are truly invalid, and any initial state that leads
to the machine attempting to execute an invalid opcode can-
not be said to either terminate or run forever.

• All unused opcodes are uniformly aliased to one of the eleven
other opcodes. For example, if they are uniformly aliased to
NOP, then 00, 9C, and C0 are all no-op instructions. If they
are all uniformly aliased to LDI, then 5C, 9C, and CC all load
the value 13 (i.e. 0xC) into the accumulator.

The two most reasonable instructions for aliasing to are certainly
NOP and HLT, perhaps followed by OUT. Eater’s own implementa-
tion of the ISA effectively aliases undefined opcodes to NOP.
We leave to future work more esoteric and/or practical uses of

this undefined behavior, such as playing happy birthday [Wikipedia
contributors 2021], becoming self-aware [Adams 1979], or rotating
the board [Simmons 2018b].

2.2 Even simpler

By moving just a couple of wires, an implemented 8-bit breadboard
computer can have its 16-byte memory𝑀 modified by pinning one,
two, three, or all four of the memory’s high-order bits to a specific
value. This has the effect of turning the 16-byte memory into an
8-byte, 4-byte, 2-byte, or 1-byte memory (respectively).

Opcode Mnemonic Function

0 NOP 𝑝𝑐 ← 𝑝𝑐 + 1

1 LDA 𝑝𝑐 ← 𝑝𝑐 + 1 𝑎 ← 𝑀 [𝑛]
2 ADD 𝑝𝑐 ← 𝑝𝑐 + 1 𝑎 ← 𝑎 +𝑀 [𝑛]
3 SUB 𝑝𝑐 ← 𝑝𝑐 + 1 𝑎 ← 𝑎 −𝑀 [𝑛]
4 STA 𝑝𝑐 ← 𝑝𝑐 + 1 𝑀 [𝑛] ← 𝑎
5 LDI 𝑝𝑐 ← 𝑝𝑐 + 1 𝑎 ← 𝑛
6 JMP 𝑝𝑐 ← 𝑛
7 JC 𝑝𝑐 ← 𝑛 if the 𝑐 flag is set

𝑝𝑐 ← 𝑝𝑐 + 1 otherwise
8 JZ 𝑝𝑐 ← 𝑛 if the 𝑧 flag is set

𝑝𝑐 ← 𝑝𝑐 + 1 otherwise
14 OUT 𝑝𝑐 ← 𝑝𝑐 + 1 𝑑 ← 𝑎
15 HLT halt the machine

Fig. 2. ISA specification for Ben Eater’s 8-bit breadboard computer. Each
eight-bit instruction has a four-byte opcode in the high-order bits followed
by a four-byte operand 𝑛 in the low-order bits. Opcodes 9 to 13 are unspeci-
fied, and ADD and SUB additionally (re)set the 𝑐 and 𝑧 flags.

3 THE BUSY BEAVER

The busy beaver function, 𝐵𝐵(𝑛), is a classic example of a fast-
growing non-computable function. It is defined in terms of Turing
“machines” that read and write binary digits to a tape. 𝐵𝐵(𝑛) is the
maximum number of steps taken by an 𝑛-state, two-symbol Turing
machine that halts [Adam Yedidia and Scott Aaronson 2016].

It’s straightforward to enumerate the 𝑛-state Turing machines: in
each of the 𝑛 states, the Turing machine has to specify what it will
do if it reads a 0 and if it reads a 1. There are only five possibilities:
halt or write (a 0 or a 1) and move (left or right). Thus, there are 10𝑛

initial Turing machine configurations with 𝑛 states.
The hard part is figuring out whether each of the 10𝑛 machines

halt. If you can show a machine ever returns to a prior state, then it
definitely will run forever. If you can show a machine halts, then,
very well. But the tape, existing as it does as a piece of blatant
mathematical nonsense, is infinite: you can’t play the trick you
played with my MacBook and just wait patiently for it to perform

22
42

steps of computation.
Indeed, a fundamental characteristic of mathematical fictions

like Turing “machines” or lambda calculus evaluation is that they
may fail to terminate by repeating old states, and they can fail to
terminate in other ways too.

For example, the lambda calculus term (𝜆𝑥 .𝑥𝑥) (𝜆𝑥 .𝑥𝑥) evaluates
to itself via a call-by-value evaluation strategy, and reaching a single
repeated state suffices to show that it will evaluate forever [Simmons
2018a]. That’s an instance of a lambda term failing to terminate by
repeating an old state. On the other hand, (𝜆𝑥 .(𝑥𝑥)𝑥) (𝜆𝑥 .(𝑥𝑥)𝑥)
will never repeat a previous state in its endless evaluation (Figure 3).

4 THE BREADBOARD BUSY BEAVER

The Ben Eater Eight-Bit Breadboard Busy Beaver, BEEBBBB(𝑠), is
a computable function, defined as maximum number of execution
steps that an 8-bit breadboard computer running the Eater ISA with
𝑠 bits of addressable memory can take before halting.

279



(𝜆𝑥 .(𝑥𝑥)𝑥) (𝜆𝑥 .(𝑥𝑥)𝑥)
→ ((𝜆𝑥 .(𝑥𝑥)𝑥) (𝜆𝑥 .(𝑥𝑥)𝑥)) (𝜆𝑥 .(𝑥𝑥)𝑥)
→ (((𝜆𝑥 .(𝑥𝑥)𝑥) (𝜆𝑥 .(𝑥𝑥)𝑥)) (𝜆𝑥 .(𝑥𝑥)𝑥)) (𝜆𝑥 .(𝑥𝑥)𝑥)
→ ((((𝜆𝑥 .(𝑥𝑥)𝑥) (𝜆𝑥 .(𝑥𝑥)𝑥)) (𝜆𝑥 .(𝑥𝑥)𝑥)) (𝜆𝑥 .(𝑥𝑥)𝑥)) (𝜆𝑥 .(𝑥𝑥)𝑥)
→ (((((𝜆𝑥 .(𝑥𝑥)𝑥) (𝜆𝑥 .(𝑥𝑥)𝑥)) (𝜆𝑥 .(𝑥𝑥)𝑥)) (𝜆𝑥 .(𝑥𝑥)𝑥)) (𝜆𝑥 .(𝑥𝑥)𝑥)) (𝜆𝑥 .(𝑥𝑥)𝑥)
→ ((((((𝜆𝑥 .(𝑥𝑥)𝑥) (𝜆𝑥 .(𝑥𝑥)𝑥)) (𝜆𝑥 .(𝑥𝑥)𝑥)) (𝜆𝑥 .(𝑥𝑥)𝑥)) (𝜆𝑥 .(𝑥𝑥)𝑥)) (𝜆𝑥 .(𝑥𝑥)𝑥)) (𝜆𝑥 .(𝑥𝑥)𝑥)
→ (((((((𝜆𝑥 .(𝑥𝑥)𝑥) (𝜆𝑥 .(𝑥𝑥)𝑥)) (𝜆𝑥 .(𝑥𝑥)𝑥)) (𝜆𝑥 .(𝑥𝑥)𝑥)) (𝜆𝑥 .(𝑥𝑥)𝑥)) (𝜆𝑥 .(𝑥𝑥)𝑥)) (𝜆𝑥 .(𝑥𝑥)𝑥)) (𝜆𝑥 .(𝑥𝑥)𝑥)

Fig. 3. The non-repeating evaluation of (𝜆𝑥 .(𝑥𝑥)𝑥) (𝜆𝑥 .(𝑥𝑥)𝑥)

BEEBBBB(𝑠) is only well-defined for 𝑠 = 0, 1, 2, 3, and 4, given that
the 8-bit ISA does not have an obvious extension to allow addressing
beyond 4 bits.2

Unlike the Busy Beaver function, BEEBBBB(𝑠) is trivial to bound
above. An 8-bit breadboard computer with 𝑠 bits of addressable
memory has 𝑠 + 22 bytes of state, and because the 𝑑 register cannot
influence execution, we can safely pretend that the machine has
only 8𝑠 + 14 bytes of state. Thus, the machine can exist in

2
8×2𝑠+14

= 16384 × 2562
𝑠

distinct configurations, and so we define this function as the Up-
per Bound for the Ben Eater Eight-Bit Breadboard Busy Beaver,
UBBEEBBBB(𝑠), shown in Figure 4. The pigeonhole principle neces-
sitates that if the machine runs for UBBEEBBB(𝑠) + 1 steps, it has
repeated at least one state and will therefore repeat that state an
infinite number of additional times.

The 14 non-memory state bits have set initial values, so bounding
BEEBBBB(𝑠) from below can be done through random or exhaustive
state-space exploration of the 2562

𝑠

possible initial states [Sturtevant
and Ota 2018].
We have found the exact value of BEEBBBB(𝑠) for 𝑠 ≤ 2, and by

random state space exploration have investigated the Below Bound
for the Ben Eater Eight-Bit Breadboard Busy Beaver, BBBEEBBBB(𝑠),
for 𝑠 = 3 and 𝑠 = 4, as shown in Figure 5. The precise value of
BEEBBBB(𝑠), and therefore BBBEEBBBB(𝑠), depends on the inter-
pretation of undefined opcodes. In Figure 5, we present results for
all eleven variants described in Section 2.1.

4.1 The Four-Byte Busy Beaver

By investigating all 4 billion possible initial configurations, under
each of the eleven variants conditions described in Section 2.1. we
determined the value of BEEBBBB(2), the Ben Eater Eight-Bit Bread-
board Busy Beaver for a computer with 22 = 4 bytes of addressable
memory, for all interpretations of the undefined opcodes. If exe-
cutions that reach undefined opcodes are excluded, or if they are
treated as HLT, LDA, SUB, LDI, JMP, or JC, then BEEBBBB(2) = 773.3

There are several distinct programs that achieve this maximal
execution, but they all follow the same pattern, and the pattern
is kind of cute. Here’s a representative four-byte breadboard busy
beaver:

2Many hobbyists have extended Ben Eater’s design to allow 8-bit or even 16-bit ad-
dresses, but this requires changing the Eater ISA, and we leave the investigation here
to future work.
3If undefined opcodes are interpreted as a NOP or JZ, then BEEBBBB(2) = 835, if they
are interpreted as ADD, then BEEBBBB(2) = 838, and if they are interpreted as STA,
then BEEBBBB(2) = 1446.

Fig. 4. The theoretical upper bound of halting time for any machine with
8 × 2𝑠 + 14 bits of state, compared to the computed exact and lower bounds
of halting time for the 8-bit breadboard computer and Eater ISA.

M[0] = 31 (Subtract M[1] from accumulator)

M[1] = 01 (No-op, also the literal 1)

M[2] = 70 (If carry flag set, jump to beginning)

M[3] = 43 (Store the accumulator's value in M[3])

The first three instructions are never modified, so the first two
instructions, taken together, always subtract 1 from the accumulator.
Because subtraction is done via twos-complement addition, subtract-
ing 1 is equivalent to adding 255, so the the carry bit will always be
set except when the accumulator was 0 prior to subtraction.
The accumulator starts out set to 0, so the first time 𝑝𝑐 = 2,

the carry bit is not set and the branch is not taken. When 𝑝𝑐 = 3

subsequently, the instruction in position 3 will overwrite itself with
the value in the accumulator: 255, or FF in hexadecimal. This value,
critically, is interpreted as a halt instruction.

The program counter will then overflow so that 𝑝𝑐 = 0.
The instructions 1 through 3 will then run 256 times, with the

carry bit set the first 255 of those times; the accumulator will be
decremented each time, until it once again contains 0. The two-
hundred-and-fifty-sixth decrement will fail to set the 𝑐 flag, so the
JC instruction will not modify the program counter, allowing it to
advance to 3 for the second time.𝑀 [3] contains FF, a halt instruction,
so the computer halts.

4 + (3 × 256) + 1 = 773

This gives us a BEEBBBB(2) = 773 if we disallow the execution of
any undefined instructions.

280



4.2 The Sisyphean Beaver

For finite computing machines like my MacBook Pro or the 8-bit
breadboard computer, non-termination requires that previous states
be repeated over and over. Note that non-termination in these set-
tings is generally desirable. I don’t wantmyMacBook Pro’s operating
system to terminate unless I tell it to! Likewise, as the ultimate end
goal of many 8-bit breadboard computers is to hang on one’s wall
and produce interesting blinkenlights indefinitely: a halting pro-
gram is undesirable for this goal. A Sisyphean Beaver is therefore
also of interest: an initial state whose execution enters the longest
possible cycle.

We will define the Ben Eater Eight-Bit Breadboard Endless Beaver
BEEBBEB(𝑠) as the length of the longest cycle in the execution of
any 8-bit breadboard computer, running the Eater ISA.

5 CROWDSOURCING RESULTS

We intend, by April 1, 2021, to have http://sisyphean.glitch.me/ set
up to solicit community assistance at raising the lower bound of
BEEBBB(𝑠) and BEEBEB(𝑠) for 𝑠 = 3 and 𝑠 = 4, where at present
there are only lower bounds. In this search, we will only consider
the NOP interpretation of undefined instructions, in keeping with
the implementation of most actual 8-bit breadboard computers.
It can be reasonably expected that many of the programs with

the longest loops or longest halting times will ignore the OUT
instruction that stores a value in the 𝑑 register, which displays its
contents in decimal. That’s a shame, because these are some lights
that a proud 8-bit breadboard computer owner would presumably
wish to have blinken. Therefore, we will initially present at least 256
different leade-boards for each of four conditions (𝑠 = 3 and 𝑠 = 4,
with both halting and looping variants). One board for programs
that do not set the 𝑑 register within their path to halting, one for
the programs that set it to 1 distinct value, one for programs that
set it to 2 distinct values, and so on through programs that set the 𝑑
register to all 256 possible values.

If you’ve created 1024 leaderboards, you probably missed one. Ad-
ditional “leagues” or rankings based interestingness and/or entropy
of various sequences are left for future work.

6 FUTURE WORK

The upper bounds in Figure 4 hold for any machine with 8× 2𝑠 + 14

bits of configurable state. In particular, they would work with a
arbitrary ISA, and defining ISAs or alternate execution semantics
that allow one to approach these bounds without being obviously
pathological is an interesting challenge, especially if one restricts
onesself to ISAs that can be implemented with primitive logic chips,
keeping with the spirit of the 8-bit breadboard computer.

A less significant change that would (mostly) preserve the Eater
ISA would be to move from a von Neumann architecture, where
programs are just data stored in addressable and modifiable memory,
to a Harvard architecture where instructions were drawn from a
separate 16-byte read-only array 𝐼 [𝑝𝑐] that is distinct from the 2𝑠

byte array𝑀 [𝑛]. This change would make for substantially more
powerful halting computations and more interesting Sisyphean
beavers with no change to the design of Eater ISA and minimal
changes to its semantics or to the physical computer’s architecture.

Fig. 5. Various computed lower bounds for halting time given various uni-
form interpretations of undefined instructions. The line XXX represents
what happens when any run that reaches an undefined instruction is simply
thrown out. Values are exact for 0, 1, and 2, and are lower bounds from
random state space exploration for 3 and 4.

REFERENCES
Adam Yedidia and Scott Aaronson 2016. A Relatively Small Turing Machine Whose

Behavior Is Independent of Set Theory. Retrieved March 19, 2021 from https://www.
scottaaronson.com/busybeaver.pdf

Douglas Adams. 1979. The hitchhiker’s guide to the galaxy. Pan Books.
Apple. 2021. Small chip. Giant leap. Cupertino in California. https://www.apple.com/

mac/m1/
Ben Eater. 2017. Build an 8-bit computer from scratch. Retrieved March 19, 2021 from

https://eater.net/8bit
Ben Eater. 2018. Linkedin page. Retrieved March 19, 2021 from https://www.linkedin.

com/in/beneater/
Ben Eater. 2019. Let’s build a video card! Retrieved March 19, 2021 from https:

//eater.net/vga
Ben Eater. 2021. YouTube page. Retrieved March 19, 2021 from https://www.youtube.

com/channel/UCS0N5baNlQWJCUrhCEo8WlA
Albert Paul Malvino. 1977. Digital Computer Electronics. McGraw-Hill.
Tom Murphy VII. 2008. A non-non-destructive strategy for proving P = NP. In A Record

of The Proceedings of SIGBOVIK 2008 (SIGBOVIK, Vol. 2), Ciel Elf and Guy Fantastic
(Eds.). The Association of Computational Heresy, Pittsburgh, PA, 13–15.

Allen Newell, Alan J. Perlis, and Herbert A. Simon. 1967. What is computer science?
Science 157 (1967), 1373–1374.

Robert J. Simmons. 2018a. On unlexable programming languages. In A Record of The
Proceedings of SIGBOVIK 2011 (SIGBOVIK, Vol. 5). The Association of Computational
Heresy, Pittsburgh, PA, 79–82.

Robert J. Simmons. 2018b. That’s Numberwangcoin!. In A Record of The Proceedings
of SIGBOVIK 2018 (SIGBOVIK, Vol. 12). The Association of Computational Heresy,
Pittsburgh, PA, 36–38.

Nathan R. Sturtevant and Matheus Jun Ota. 2018. Exhaustive and Semi-Exhaustive Pro-
cedural Content Generation. In Proc. 14th Artif. Intell. Interactive Digit. Entertainment
Conf. 109–115.

Wikipedia contributors. 2021. Happy Birthday to You —Wikipedia, The Free Encyclopedia.
Retrieved March 19, 2021 from https://en.wikipedia.org/wiki/Happy_Birthday_to_
You

281


	: Fun(?) and Games Track
	 Back to Square One: Superhuman Performance in Chutes and Ladders Through Deep Neural Networks and Tree Search
	 Demystifying the Mortal Kombat Song
	 Unicode Magic Tricks
	 Video games in Fonts Fontemon
	 Soliterrible
	 Opening Moves in 1830: Strategy in Resolving the N-way Prisoner’s Dilemma

	: Obligatory Machine Learning Track
	 Universal Insights with Multi-layered Embeddings
	 Solving reCAPTCHA v2 Using Deep Learning
	 Deep Deterministic Policy Gradient Boosted Decision Trees
	 Tensorflow for Abacus Processing Units
	 RadicAI: A Radical, Though Not Entirely New, Approach to AI Paper Naming

	: Followup Track
	 A Note on ``The Consent Hierarchy''
	 Another Thorough Investigation of the Degree to which the COVID-19 Pandemic has Enabled Subpar-Quality Papers to Make it into SIGBOVIK, by Reducing the Supply of Authors Willing to Invest the Necessary Effort to Produce High-Quality Papers
	 Story Time

	: ``Type'' Track
	 Stop Doing Type Theory
	 If It Type-checks, It Works: FoolProof Types As Specifications
	 Oracle Types
	 Lowestcase and uppestcase letters: Advances in derp learning
	 Dependent Stringly-Typed Programming
	 Yet Another Lottery Ticket Hypothesis

	: (Psycho)metrics Track
	 Spacecraft Attitude Determination and Control
	 Instruction Programs
	 Winning the Rankings Game: A New, Wonderful, Truly Superior CS Ranking
	 openCHEAT: Computationally Helped Error bar Approximation Tool - Kickstarting Science 4.0
	 On the dire importance of MRU caches for human survival (against Skynet)

	: Not Really Biology But Closer to it Than the Other Papers Track
	 Revenge of the pith: Surveying the landscape of plant-powered scientific literature
	 On the Origin of Species of Self-Supervised Learning
	 Critical Investigations on Avians: Surveillance, Computational Amorosities, and Machines
	 The Urinal Packing Problem in Higher Dimensions

	: ApPLied Theory
	 The Newcomb-Benford Law, Applied to Binary Data: An Empirical and Theoretic Analysis
	 How to get to second base and beyond - a constructive guide for mathematicians
	 NetPlop: A moderately-featured presentation editor built in NetLogo

	: (Meta)physics
	 A Complete Survey of 0-Dimensional Computer Graphics
	 Macro-driven metalanguage for writing Pyramid Scheme programs
	 On the fundamental impossibility of refining the Theory of Everything by empirical observations: a computational theoretic perspective
	 Inverted Code Theory: Manipulating Program Entropy

	: Definitely Finite Track
	 Stone Tools as Palaeolithic Central Unit Processors
	 Build your own 8-bit busy beaver on a breadboard!
	 What Lothar Collatz Thinks of the CMU Computer Science Curriculum

	: Recursive Track
	 On Sigbovik Paper Maximization
	 SIGBOVIK 2021 isn't named SIGCOVID
	 Refutation of the “Failure to remove the template text from your paper may result in your paper not being published” Conjecture
	 ``The SIGBOVIK paper to end all SIGBOVIK papers'' will not be appearing at this conference


